
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 09

Lecture 44

Lecture 44 : Primal-dual Algorithm for Minimum Weighted Feedback Vertex Set

 Welcome. So, in this class we will start seeing the Primal Dual Method for Designing
Approximation Algorithm. In the beginning of this course we have seen how using
Primal Dual Method we can get an f factor approximation algorithm for the set cover
problem. So, in this class we will see the another problem which is called feedback vertex
set and we see how using primal dual method we can get an approximation algorithm. So,
the problem is feedback vertex set. So, what is the problem? Input is undirected and
undirected age weighted graph G=(V , E) and the weight function from E→R positive.

So, this weights are for vertices not edges vertex weighted. Goal is to compute a subset S
of V of minimum sum of weights. So, that the graph induced on V ∖S this is the graph
where the vertex set is V ∖S and the edge set are the set of edges whose both end points
are in V ∖S. So, that the induced graph on V ∖S is acyclic.
Equivalently the induced graph on V ∖S is a forest because it is a undirected graph
equivalently for every cycle C of the graph G that cycle contains that cycle intersects
with S in particular S hits every cycle C of the graph. These equivalences are immediate,
but if it is not clear you must try to prove it. So, what is the first step of applying primal
dual method? The first step is to write an integer linear programming formulation of the
problem. and then we relax it to get a linear programming relaxation. So, let us write the
ILP formulation.

 We have a variable xi for every vertex i∈V which takes value 1 if we pick vertex i in our

solution which is a feedback vertex set and 0 otherwise. So, the goal is to minimize the

total weight of feedback vertex set ∑i∈V
w i xi subject to here the equivalence condition is

useful. writing as inequalities or constraints it turns out that the third one is useful it says
that for every cycle in the graph G, I must pick at least one vertex. So, let us write down
that constraint such that for all cycle C of G, think of cycle C as the set of vertices in the
cycle then i∈C xi this should be greater than equal to 1 and xi should take value either 0

or 1 for all i∈V . So, this is the ILP formulation to get the LP formulation we relax this
integrality constraint with xi.

 to lie in between 0 and 1. And because we are minimizing ∑i∈V
w i xi and because each

weight w i is positive, then we can remove this constraint that xi≤1 because any optimal

solution will always have xi≤1. So, this is the LP formulation. Again here we see that we

have exponentially many constraints because a graph can have exponentially many
cycles. Since a graph can have an exponential number of cycles.

 Give an example of such a graph take it as a homework. Give an example of a graph
with exponentially many So, since a graph can have an exponential number of cycles,
our LP relaxation may have depending on the input graph and exponential number of
constraints. but this is perfectly fine because we are not going to solve the LP because in
primal dual method we only use LPs to guide or to design a combinatorial algorithm.
However, since we do not need to solve the LP in primal dual method this is fine. So,
what we do we write the dual of the primal LP.

 So, for each constraint we have a variable. So, for this constraint corresponding to C let
us have a variable yC and so, our dual LP maximize sum of dual variables C∈⸿ is the

set of cycles of G subject to for every vertex i∈V we have sum over cycles which
contain i as a vertex yC this should be less than equal to w i and for all cycle C∈⸿ yC

should be greater than equal to 0. So, this is the dual LP. Now, let us briefly recall the
primer dual method which we have overview for designing an f factor approximation
algorithm for set cover. So, Overview of Primal Dual Method.

 maintain ah dual feasible solution and ah partial primal because it is a partial solution it
is infeasible. solution. So, let us not define the partial solution formally intuitively it is a
partial solution even if you do not get what is partial solution for a problem it is fine it is
not formally defined it is just the high level idea. Then iteratively increase one or more
dual variables maintaining dual feasibility. and increasing the number of tight dual
constraints.
Use tight dual constraints to make the partial primal infeasible solution more complete.
continue till the primal solution the partial primal solution. becomes feasible feasible and
thus complete. So, now, let us see this framework at work in the minimum feedback
vertex set minimum weighted feedback vertex set problem. So, if I just write down this if
I just apply this framework to this problem what we get is something like.

 I need to start with a dual feasible solution. So, let us open the dual LP, here is the dual
LP and you see setting yC's to 0 for every C is a dual feasible solution. Here is another

problem it seems we have is that there are exponentially many dual variables and
because we are maintaining a dual feasible solution we need to maintain exponentially
many variables it seems. but it is not problematic for this case because we will see that all

the dual variables except polynomially many will be nonzero. So, we will be storing only
nonzero dual variables which will always be polynomially many and hence although the
number of dual variables is exponentially many.

 we can store the a dual feasible solution in our algorithm succinctly with polynomially
many numbers. So, start with dual feasible solution yC equal to 0 for all cycle C∈⸿ ok.

And what is the primal infeasible solution? The primal solution corresponds to vertices
whether we are picking it or not. So, a natural partial primal solution is an empty state
empty set of vertices. So, S is the set of vertices that we are that is the solution we are
building iteratively.

 So, S equal to empty set is the primal partial solution to begin with ok. Then because all
w y's are positive you see all the dual constraints are not tight, none of the inequalities are
equality all are strict inequalities. So, what a natural thing is what we did in set cover we
take a dual variable and increase it till one of the dual constraint becomes tight. So, a
natural idea is to find a cycle C in G [V ∖S] ok. And this cycle I need to kill I have to
pick at least one vertex from that cycle.

 So, I take a find a cycle and then increase the dual variable yC till any dual constraint

becomes tight again tight means the inequality becomes equality. So, in particular how by
how much we can increase. each dual constraint which has yC in the left hand side puts

an upper bound on how much yC can be increased. So, the and each constraint

corresponds to a vertex.

 So, for vertex in c. So, a vertex i allows yC to increase by at most w i−∑C ’∈⸿ , i∈C ’ yC ’. So,

vertex i allows yC to increase by this much amount and every vertex in C put some upper

limit. So, the minimum maximum that we can increase yC is the minimum of these

quantities over all i∈C let us call this ϵ . So, we increase yC by ϵ and then at least one

inequality or at least one inequality which involves yC becomes tight, we pick at least one

vertex corresponding to a tight inequality. We pick vertex i from the tight inequalities
over i∈C and put it in S ok.

 And then we this way we make S more complete you know now in G [V ∖S] this
particular cycle C is not there ok. And then we do a clean up step. So, we remove all
degree 1 vertices because degree 1 vertices cannot participate in any cycle ok. So, in the
next lecture we will see how this is a natural algorithm and how to analyze this algorithm
and what approximation guarantee we can achieve from it ok. So, let us stop

