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Lecture  44  :  Primal-dual  Algorithm  for  Minimum  Weighted  Feedback  Vertex  Set

 Welcome. So, in this class we will start seeing the Primal Dual Method for Designing 
Approximation  Algorithm.  In  the  beginning  of  this  course  we  have  seen  how using 
Primal Dual Method we can get an f factor approximation algorithm for the set cover 
problem. So, in this class we will see the another problem which is called feedback vertex 
set and we see how using primal dual method we can get an approximation algorithm. So, 
the problem is feedback vertex set.  So, what is the problem? Input is undirected and 
undirected age weighted graph G=(V , E) and the weight function from E→R positive.

So, this weights are for vertices not edges vertex weighted. Goal is to compute a subset S 
of V of minimum sum of weights. So, that the graph induced on V ∖S this is the graph 
where the vertex set is V ∖S and the edge set are the set of edges whose both end points 
are  in  V ∖S.  So,  that  the  induced  graph  on  V ∖S is  acyclic.
Equivalently  the  induced graph on  V ∖S is  a  forest  because  it  is  a  undirected graph 
equivalently for every cycle C of the graph G that cycle contains that cycle intersects 
with S in particular S hits every cycle C of the graph. These equivalences are immediate,  
but if it is not clear you must try to prove it. So, what is the first step of applying primal 
dual method? The first step is to write an integer linear programming formulation of the 
problem. and then we relax it to get a linear programming relaxation. So, let us write the  
ILP  formulation.

 We have a variable xi for every vertex i∈V  which takes value 1 if we pick vertex i in our 

solution which is a feedback vertex set and 0 otherwise. So, the goal is to minimize the 

total weight of feedback vertex set ∑i∈V
w i xi subject to here the equivalence condition is 

useful. writing as inequalities or constraints it turns out that the third one is useful it says 
that for every cycle in the graph G, I must pick at least one vertex. So, let us write down 
that constraint such that for all cycle C of G, think of cycle C as the set of vertices in the  
cycle then i∈C  xi this should be greater than equal to 1 and xi should take value either 0 

or 1 for all i∈V . So, this is the ILP formulation to get the LP formulation we relax this 
integrality  constraint  with  xi.



 to lie in between 0 and 1. And because we are minimizing ∑i∈V
w i xi and because each 

weight w i is positive, then we can remove this constraint that xi≤1 because any optimal 

solution will always have xi≤1. So, this is the LP formulation. Again here we see that we 

have  exponentially  many  constraints  because  a  graph  can  have  exponentially  many 
cycles.  Since  a  graph  can  have  an  exponential  number  of  cycles.

 Give an example of such a graph take it as a homework. Give an example of a graph 
with exponentially many  So, since a graph can have an exponential number of cycles, 
our LP relaxation may have  depending on the input graph and exponential number of  
constraints. but this is perfectly fine because we are not going to solve the LP because in  
primal dual method we only use LPs to guide or to design a combinatorial algorithm. 
However, since we do not  need to solve the LP in primal dual method this is fine. So, 
what  we  do  we  write  the  dual  of  the  primal  LP.

 So, for each constraint we have a variable. So, for this constraint corresponding to C let 
us have a variable yC and so, our dual LP maximize  sum of dual variables C∈⸿  is the 

set of cycles of G subject to  for every vertex  i∈V  we have sum over cycles which 
contain i as a vertex yC this should be less than equal to w i and for all cycle C∈⸿  yC 

should be greater than equal to 0. So, this is the dual LP. Now, let us briefly recall the 
primer dual method which we have overview for designing an f factor approximation 
algorithm  for  set  cover.  So,  Overview  of  Primal  Dual  Method.

 maintain ah dual feasible solution and ah  partial primal because it is a partial solution it  
is infeasible. solution. So, let us not define the partial solution formally intuitively it is a  
partial solution even if you do not get what is partial solution for a problem it is fine it is 
not formally defined it is just the high level idea. Then iteratively increase  one or more  
dual  variables  maintaining  dual  feasibility.  and  increasing  the  number  of  tight  dual 
constraints.
Use tight dual constraints to make the partial  primal infeasible solution more complete.  
continue till the primal solution the partial primal solution. becomes feasible feasible and 
thus complete. So, now, let us see this framework at work in the minimum feedback 
vertex set minimum weighted feedback vertex set problem. So,  if I just write down this if 
I  just  apply  this  framework  to  this  problem  what  we  get  is  something  like.

 I need to start with a dual feasible solution. So, let us open the dual LP, here is the dual 
LP and you see setting yC's to 0 for every C is a dual feasible solution. Here is another 

problem it  seems  we  have  is  that  there  are  exponentially  many   dual  variables  and 
because we are maintaining a dual feasible solution we need to maintain exponentially 
many variables it seems. but it is not problematic for this case because we will see that all  



the dual variables except polynomially many will be nonzero. So, we will be storing only 
nonzero dual variables which will always be polynomially many and hence although the 
number  of  dual  variables  is  exponentially  many.

 we can store the a dual feasible solution in our algorithm succinctly with polynomially 
many numbers. So, start with dual feasible solution yC equal to 0 for all cycle C∈⸿  ok. 

And what is the primal infeasible solution? The primal solution corresponds to vertices 
whether we are picking it or not. So, a natural partial primal solution is an empty state 
empty set of vertices. So, S is the set of vertices that we are that is the solution we are 
building  iteratively.

 So, S equal to empty set is the primal partial solution to begin with ok. Then because all  
w y's are positive you see all the dual constraints are not tight, none of the inequalities are 
equality all are strict inequalities. So, what a natural thing is what we did in set cover we 
take a dual variable and increase it till one of the dual constraint becomes tight. So, a 
natural idea is to  find a cycle C in G [V ∖S ] ok. And this cycle I need to kill I have to 
pick  at  least  one  vertex  from  that  cycle.

 So, I take a find a cycle and then increase the dual variable yC till any dual constraint 

becomes tight again tight means the inequality becomes equality. So, in particular how by 
how much we can increase. each dual constraint which has yC in the left hand side puts 

an  upper  bound  on  how  much  yC can  be  increased.  So,  the  and  each  constraint 

corresponds  to  a  vertex.

 So, for vertex in c. So, a vertex i allows yC to increase by at most w i−∑C ’∈⸿ , i∈C ’ yC ’. So, 

vertex i allows yC to increase by this much amount and every vertex in C put some upper 

limit.  So,  the minimum maximum that  we can increase  yC is  the minimum of  these 

quantities over all  i∈C  let us call this ϵ . So, we increase yC by ϵ  and then at least one 

inequality or at least one inequality which involves yC becomes tight, we pick at least one 

vertex corresponding to a tight inequality. We pick vertex i from the tight inequalities 
over  i∈C  and  put  it   in  S  ok.

 And then we this  way we make S  more  complete  you know now in  G [V ∖S ] this 
particular cycle C is not there ok. And then we do a clean up step. So, we remove  all  
degree 1 vertices because degree 1 vertices cannot participate in any cycle ok. So, in the 
next lecture we will see how this is a natural algorithm and how to analyze this algorithm 
and what approximation guarantee we can achieve from it ok. So, let us stop


