
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 09

Lecture 43

Lecture  43  :  Integer  Multicommodity  Flow

 Welcome. So, in the last class we have started seeing the integer multi commodity flow 
problem.  It  is  an  NP complete  problem and  we  have  first  written  the  integer  linear 
programming formulation and then we relaxed it to linear programming formulation. In 
this class we will see how we can use that LP formulation, LP relaxation for that problem 
to  get  an  approximation  algorithm  for  integer  multi  commodity  flow.  integer  multi 
commodity flow. Let us recall the LP relaxation we had a variable c which denotes the 
congestion.

 So, which we want to minimize subject to we had flow variables. So, for every edge e  
and commodity i we had a variable f e , i which is 1 if that edge is carrying that commodity 

otherwise it  is 0. So, for every  i∈[k ] and for every vertex  v∈V ∖{si , t i}.  So, because 

edges do not have any capacity only flow conservation needs to be ensured that means, at  
every vertex v total flow in for i-th commodity should be same as total flow out at the for  
the  i-th  commodity.

 So, this is ∑{u , v}∈E
f {u , v}, i this should be same as this is total flow in for i-th commodity 

same as  {v ,w}∈E. So, this is the flow conservation property and at  si and t i at  si total 

flow  out  should  be  1  and  at  t i total  flow  in  should  be  1.  So,  for  all  i∈[k ] 

∑{si , v}∈E
f {si , v}, i=1 which should be same as total flow in  ∑{v , t i}∈E

f {v , t i}, i=1 . So, these 

are flows and we need some other variables for every edge  xe it should denote the it 

should  denote  its  load  and  the  c  should  be  maximum  load.

 So, these inequalities we missed in last classes ILP formulation. So, for every variable 
for every edge e we have a variable xe which simply denotes the load of that edge recall 

load of an edge is the is the number of commodities that are passing through that edge.  

So,  xe is equal to  ∑i=1

k
f e , i is 1 if edge e carries the ith commodity. So,  xe denotes the 

load  of  the  edge  e  and  the  congestion  is  the  maximum  load.  Now,  because  I  am 



minimizing  c.

 So, if I put a constraint that  congestion should be as high as the load of every edge then 
the then I need xe is less than equal to c. So, if I want to minimize c then c must be equal 

to minima or maximum of all the loads of the edges. So, these are the constraints and of 
course, we have the usual constraints that is that that this variables should take  {0 ,1} 
value for ILP formulation and should take only positive values greater than equal to 0 
values for. So, for all edge e and i∈[k ] f e ,k≥0 , xe≥0 . So, this is the LP relaxation for 

integer  multi  commodity  flow.

 Now, as usual so, we will design a randomized rounding based algorithm. So, we solve  

the  be  an  optimal  solution.  Now,  this  f ∗ gives  gives  you  a  fractional  solution  each 
commodity did not be sent along one each along one path from si to t i because this need 

not be need not take {0 ,1} values f e , i. So, but because summation f is 1 roughly along all 

paths,  then  we  use  this  f  values  as  probabilities.

 So, if some edge has higher f value, then the linear programming solution LP optimal 
solution is indicating to use that edge more often or more likely than other edges. So, 

what we do here? It is not completely clear how to how to use this ( f ∗ , x∗) to select one 

path from si to t i for every i. So, we need to choose one path Pi from si to t i for all i∈[k ] 

ok. Somehow using f ∗ and x∗ as our guide. So, for that we it would have been natural if 

instead  of  f ∗ we  have  distribution  over  all  the  paths  from  si to  t i.

 So, if I look at si-t i there could be multiple paths they can share some part or they could 

be disjoint and so on and the number of paths could be exponentially many. So, but we 
do not we are not given paths we are given flows on every edge. So, here the useful thing  
is the flow path decomposition. So, what is flow path decomposition? Lemma flow path 
decomposition. So, what is it? It says that if I am given a flow, flow means every edge 
carrying certain amount of flow and some values on every edge which satisfies flow 
conservation property and capacity constraint, but here edges do not have any capacity 
they  have  infinite  capacity.

 So, only we need flow conservation property. So, let if it is a function from edge set to 
non-negative real numbers R s to t flow. That means, at every vertex except s and t flow 
conservation property is satisfied flow in equal to flow out at s total flow in total flow out  
is f of summation of the flow values of the edges and at t total flow in should be same as 
total flow out at s. So, this is the definition of flow. there exists s to t paths because we 
have we will use Pi in our algorithm let us denote the paths as Q1 ,…, Qk or Ql , k is there 

in  our  problem  definition  of  multi  commodity  flow.



 Then there exists s-t paths Q1 to Ql and  values and non-negative values f 1 to f l such that 

for every edge if I look at the flow value defined by f or if I look at the flow value as if 
along path Q1 I am sending f 1 unit of flow from s to t along path Q2 I am sending f 2 units 

of flow and so on and so forth. Then the flow values in every edge matches they such that 
for every edge e∈E. f (e) this is the flow value as per this function is same as all the i's in 

[l ] this edge e belongs to this path Qi. So, think of here is s here is t here is an edge e and 

if the flow value passes through this edge suppose this Q1 passes suppose Q10 passes. So, 

total flow value of edge e is the sum of the flow values of all these Qi's that uses e this is 

f i.

 So, if this holds then we say then that this is Q1 ,…,Ql are alternative representation is a 

flow path decomposition of this flow this Q1 ,…,Ql these are called flow paths. Not only 

that moreover l is at most the number of edges. in the graph that is 1 and  Q1 ,…,Ql, 

f 1 ,…, f l can be computed in time poly of number of vertices in number of edges and the 

value of  log∑|f e| basically  in  polynomial  time of  the input  this  flow paths  can be 

computed.  So,  the  proof  is  quite  standard  in  any standard  book on algorithm which 
discusses maximum flow problem discusses this theorem along with the proof. So, proof 
I  am  leaving  it  as  a  homework.

 So,  now,  what  I  do  for  every  commodity  i  I  have  a  flow and I  get  the  flow path 
decomposition. So, let for every i∈[k ] that means, for every commodity let Pi ,1 ,…, Pi , l 

and  f i ,1 ,…, f i , l be a  flow path decomposition of  f i the flow for i-th commodity.  So, 

because we are sending to sending total 1 unit of flow for every commodity we have 
f i ,1 ,…, f i , l equal to 1 and all this  f i ,1 ,…, f i , l these are greater than equal to 0. So, it is 

very natural to treat them this f i s values as probabilities and pick one of this paths one of 

this l one among this l paths as per this probability distribution and send one unit of i-th  
commodity  along  that  path.

 So,  pick  one  of  Pi ,1 ,…, Pi , l with  probabilities  f i ,1 ,…, f i , l and  send  one  unit  of 

commodity i along that path ok. So, is a very natural algorithm. So, let us analyze the 

algorithm. So, let c∗ be the optimal congestion. So, what we will show is that the load of 

every  edge  e  is  not  too  far  from  c∗ with  high  probability.

 So, you see x equal to define xe=∑i=1

k
xe , i. So, e is an edge. So, where xe is the load of 

edge e and  xe , i is the indicator random variable whether edge e is used for sending ith 

commodity.  So,  indicator  random variable  for  the event  that  edge e  is  used.  to  send 
commodity  i  from  si to  t i.



 So, congestion is max of xe. which is ALG. So, what we will show what is expectation 

of X e? Expectation of X e by linearity of expectation i=1 , ... , k  expectation of X e , i. Now 

again because of flow path decomposition this is the expectation of indicator random 
variable  is  the  probability  that  the  event  happens.

 So, the probability that edge e is used to send commodity i from si to t i is exactly f e , i this 

is because of the flow path decomposition and so, this is f e , i ok. So, you see expectation 

of or so, this is less than equal to congestion. You see for every edge we had a variable 
X e which was denoting the congestion. So, this is small xe here we have capital X e. So, 

this is equal to x denotes the congestion of edge e in the linear programming formulation 
and capital X is the congestion which is an indicator random variable of edge e in our  
routing  decided  by  the  algorithm.

 So, xe≤ce
∗. What we will show is that the probability that the load of edge e is far away 

from expectation of  X e which is at most  c∗ is very small. And here we use Chernoff 

bound because you see  X e is sum of random variables and these are indicator random 

variables that is why they are  {0 ,1} random variables and they are independent also. 
across for every i∈[k ] they are independent. So, probability that X e is greater than equal 

to  (1+δ )c∗,  c∗ is  an  upper  bound  on  expectation.

 So, this is less than equal to ( eδ

(1+δ )1+δ )
c∗

 ok. So, this is for a 1 edge now. So, this is from 

Chernov bound. Now, we apply union bound to get the probability that there exist at least 

1 edge whose load is high in the sense more than greater than equal to (1+δ )c∗. So, by 

union bound probability that the probability that there exist an edge e such that  X e is 

greater than equal to (1+δ )c∗ is less than equal to ah suppose there are m( eδ

(1+δ )1+δ )
c∗

. 

So, probability that for every edge the load is less is 1 minus this probability that ALG is 

congestion of the network ALG is less than (1+δ )c∗ which is exactly probability that for 

all edge e∈E X e is less than (1+δ )c∗ which is 1 minus probability that there exists an 

edge  e∈E X e greater  than  equal  to  (1+δ )c∗,  but  this  is  greater  than  equal  to 

1−m( eδ

(1+δ )1+δ )
c∗

.

 Now, we just need to put some appropriate value of δ . So, for δ=2(1+ lnm
ln lnm) you see 



the value of δ  we are putting is greater than 1. So, we cannot use the simplified version of 
the Charnoff bound that is why we have used the general version of the Charnoff bound 
which works for every δ  greater than 0. This works for all  δ  greater than 0 this is very 
important. So, for this what we have is probability that ALG is less than 1 plus delta 

times  c∗ this  is  less  than  equal  to  or  this  is  greater  than  equal  to  1− 1

mc
∗ .

 So, this means that with high probability because sister is at least 1 that means, with high 

probability  this  ALG  is  less  than  equal  to  (1+δ )c∗.  So,  with  high  probability  in 

algorithmic  or  in  randomized  algorithms  we  say  some  event  to  happen  with  high 
probability  if  the  probability  is  greater  than  equal  to  1  minus  1  by  poly  of  input  
parameters here the number of edges is an input parameter. So, with high probability the 
probability  congestion  of  the  routing  output  by  the  algorithm  is  if  you  put 

δ=2(1+ lnm
ln lnm) factor approximate solution. So, let us stop here. Thank you.


