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Lecture  42  :  Chernoff  Bound  (Contd.)

 Welcome. So, in the last class we have stated and proved Chernoff bounds, we have 
stated two variations, but remember that there are various other forms of Chernoff bound, 
but they convey the same message that it is if the sum of n independent random variables 
and they are all  bounded they are not  very they do not  take unbounded values their  
expectations are bounded and so on. Or in the basic form they take only finite values then 

it is quite likely very likely that  the some random variable X=∑i=1

n
X i its value is within 

expectation of X in multiplicative term with very high probability close to 1 probability. 
So, let us continue Chernoff bound and see some more of its useful forms. So, Chernoff 
bound  So, let us recall we have shown this theorem let  X1 ,…, X n be n independent 

random  variable  not  necessarily  identically  distributed.

 independent {0 , ai} random variables. That means, they take value 0 or ai these are the 2 

possible values  ai s are greater than 0 and less than equal to 1 and suppose we have 2  

numbers L lower bound on expectation of X and U upper bound of expectation of x, 

where  X=∑i=1

n
X i greater than 0 probability that X takes value greater than equal to 

(1+δ )U  is  less  than  equal  to  ( eδ

(1+δ )1+δ )
U

.

 and probability that X takes value less than equal to (1−δ )L this is less than equal to 

( e−δ

(1−δ )1−δ )
L

 ok. is the Chernov bound in full generality in terms of this bounds upper 

bounds. And then we showed two useful to work with bounds for these terms which are 

this is less than equal to e−U δ
2 /3, this holds for δ  in between 0 and 1 both inclusive. And 

for the lower bound we have e
−L

δ2

2  this holds for δ  greater than equal to 0 and less than 1 

ok.  In  particular  this  whole  inequality  holds  for  δ  greater  than  0  and  less  than  1.



 So, we can remove this also. So, probability that X takes value  than equal to (1+δ )U  is 

less than equal to e−U δ
2 /3 for δ  greater than 0 and less than equal to 1, but the on the lower 

side probability that X is less than equal to (1−δ )L this is less than equal to e
−L

δ2

2 . This 

holds for δ  greater than 0, but δ  should be strictly less than 1. not for equal to 1, but often 
we need this inequality for equal to 1. So, let us prove what we can get for δ  equal to 1 
this  lower  bound.

 So, for that let us prove this lemma again let X1 ,…, X n be n independent {0 , ai} random 

variables  where a i are greater than 0 and less than equal to 1 ok, then for X=∑i=1

n
X i 

ok. If L is less than equal to expectation of X, then probability that X equal to 0,  You see  
here if  δ=1 then probability that X is less than equal to 0, but X cannot take negative 
value. So, this probability that probability X is less than equal to (1−δ )L for δ  equal to 0 

is same as the probability that X equal to 0 this is less than e−L. So, if you put δ  equal to 1 
here.

 So, this is even a stronger inequality we get we need  e
−
L
2  we are proving something 

stronger which is e−L ok. So, let us prove it. So, what is probability  again let us assume 
probability that  X i equal to  ai is equal to  pi and this is not equal to 0 for all  i∈[n]. 
Because if expectation of X is 0 then probability of probability  if expectation of X equal  
to 0 then probability of X equal to 0 is 1. So, we need an assumption that each X i takes 

value ai with probability non with non 0 probability X itakes ai with non-zero probability 

for  every  i∈[n] suppose  that  probability  is  pi.

 So, now, let us compute what is probability that X equal to 0 the only way X could be 0 
is each X i is 0. So, this is probability that X i equal to 0 for all i∈[n]. Now here again we 

use independence of X1 ,…, X n to write this probability as product i=1 ,…,n probability 

X i equal to 0 and what is probability X i equal to 0 this is product i=1 ,…,n. 1−pi. Now, 

applying a m g m inequality that geometric mean of n positive numbers is less than equal 
to  arithmetic  mean  of  n  positive  numbers.

 This is less than equal to (1n∑i=1

n
(1 – pi))

n

 . So, this is (1n∑i=1

n
(1 – pi))

n

. Now, because 

each ai is less than equal to 1, you can pretend that pi is 1×pi. So, this is less than equal 

to because I have a negative sign here 1−(( 1n )∑i=1

n
ai pi)

n

 ok. And so, what is  ∑ ai pi 

this  is  nothing,  but  expectation  of  X.



 So, this is  (1 – E [X ]
n )

n

. Now, use the fact that  1+x≤ex for all x. So, this is less than 

equal to e−x is 
E [X ]
n

. this is so because 1+x≤ex for all real number x, this is e−E [X ]. but 

L  is  a  lower  bound  of  expectation  of  x.

 So, this is e−L which concludes the proof. So, now, we observe that e−L is even smaller 

than e
−L

δ2

2  for δ  equal to 1, what we can write? We can write this inequality even for δ  

equal to 1. which is often useful corollary. Let X1 ,…, X n be n independent {0 , ai} random 

variable, X i takes value ai with probability with nonzero probability for every i∈[n], then 

for  X=∑i=1

n
X i δ  greater than 0 less than equal to 1 ok and U is an upper bound of 

expectation of X. and L is a lower bound, then we have probability that X takes value  

greater than equal to  (1+δ )U  is less than equal to  e−U δ
2 /3 and probability that x takes 

value  less  than  equal  to  (1−δ )L is  less  than  equal  to  e
−L

δ2

2 .

 So, this concludes our review of Chernoff bound. Let us again go back to algorithm 
design approximation algorithms by randomized rounding and see how this bounds can 
be used effectively. So, for that we consider the problem of integer multi commodity 
flow. integer multi commodity flows. So, what is the input? input is an undirected graph 
G=(V , E) ok  and  k  source  destination  pairs  {s1 , t1},{s2 , t2},…,{sk , t k} arr  k  source 

destination  pairs.

 And, we want to send one unit of commodity from si to  t i along one path we need to 

send one commodity from si to  t i along an  si to  t i path  Pi ok. So, pictorially here is a 

graph G. and we have various sources {s1 , t1},{s2 , t2},…,{sk , t k} there is not be distinct s1 

may be same as t10 and so on they can be different they can be same si could be equal to 

t j or  si could  be  equal  to  s j for  i  and  j∈[n].

 And I need to find various paths they can share vertices they can share edges sorry this is  
s1 to t1 then I have to find s2 to t2 maybe this is the path and then maybe s3 to t3 is another 

path and so on ok. What is the goal? I define the congestion or the load of an edge is the 
number of paths that are using that edges number of paths among P1 ,…, Pk. Load of an 

edge  E  is  the  number  of  paths  among  P1 ,…, Pk that  use  the  edge  E.  ok  and  the 

congestion of the network is the maximum load of any path congestion of the network is 
the maximum load of any edge. So, the goal of the problem is to route these commodities  
to  minimize  the  congestion  of  the  network.



 So, route k commodities  to minimize the congestion of the network. So, this problem 
has  various  applications  for  example,  in  chip  design.  So,  in  chip  design we need to 
connect various components of the chip using wires and there could be pathways and the 
bandwidth which is the bandwidth of an edge is the number of wires that passes through 
that edge. and the congestion of the network then corresponds to the bandwidth required 
to connect this source and destinations these various pairs of components. So, this is one 
applications and it has various other applications, it has it is known to be NP complete 
problem  and  we  will  see  an  approximation  algorithm  using  randomized  rounding 
technique.

 So, for that  here is a ILP formulation for that problem is we have a variable c for the 
congestion which you want to minimize. So, we have a variable c denoting congestion of  
the network and for every edge E and commodity i∈[k ], ce , i is 1 if edge e is used to send 

commodity i from si to t i ok, otherwise it is 0. So, what we want to minimize? We want 

to  minimize  the  congestion.  So,  minimize  C subject  to  this  flow variables.  So,  flow 
variables  should  satisfy  there  is  no  capacity  constraint.

 So, it only needs to satisfy conservation of flows. So, at every vertex v in so, for every 
commodity  i∈[k ] the flow should be conserved for the i-th commodity at all vertices 
except  si and  t i. Then for all vertex  v∈V ∖{si , t i} So, here is a vertex v total incoming 

flow  for  i-th  commodity  will  should  be  same  as  the  total  outgoing  flow.  So, 

∑(u , v)∈E
c(u , v) , i if  (u , v , i) should be same as total outgoing flows ∑(v ,w)∈E

c(v ,w) , i this is 

the flow conservation and at source and destination. So, for all at  si the outgoing flow 

should  be  1  and  at  t i incoming  flow  should  be  1.

 So, for all (si , v)∈E f si , v , i this sum should be 1 which is the total outgoing flow for ith 

commodity at si should be same as the total incoming flow for i-th commodity. So, these 

are the things and if for every age and every commodity this should be either 0 or 1, this 
is  for  every age e and for  every commodity  i∈[k ].  So,  this  is  the exact  formulation 
integer linear programming formulation, we relax this integrality requirement f ei to lay to 

lie  in between 0 and 1.  So,  greater  than 0 and less than equal  to 1 and take it  as  a 
homework that I can get rid of these inequalities without affecting the optimum. So, I get 
rid  of  these  inequalities.

 So, I only keep f ei is greater than equal to 1 for every edge E and for every commodity i. 

So, this is the relaxed LP. In the next class we will see how we can use this relaxed LP to 
design a beautiful  randomized rounding based algorithm for integer multi-commodity 
flow. It is an approximation algorithm with small approximation ratio ok. Let us stop 
here. Thank you.


