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Lecture  41  :   Chernoff  Bound

 Welcome, in this lecture we will study a very powerful class of probabilistic inequalities 
and they are called Chernoff bounds. And then we will see how this Chernoff bounds can 
be used for designing randomized approximation algorithms by randomized rounding of 
linear  programs.  So,  today's  topic  is  review  of  Chernoff  bounds.  So,  it  is  not  one 
inequality, but a class of inequalities which are called Chernoff bounds collectively. So, 
in essence all these inequalities Chernoff bounds essentially show that it is very likely 
that the sum of n independent {0 ,1} random variables are not far away. from the expected 
value  from  the  expectation  of  the  sum.

 So, this is the core idea or message of all these Chernoff bounds. So, let us first see the 
most  basic  version and most  useful  version of  Chernoff  bound.  most  popularly used 
theorem.  Let  X1 , X 2 ,…, X n be  n  independent  this  is  very  important  {0 ,1} random 
variables, this kind of random variables are also called Bernoulli random variables, they 
take  value  0  with  certain  probability  and  value  1  with  the  remaining  probability.

 So, for Chernow bound this n random variables need to be independent that is very 
important  although the  {0 ,1} this  can  be  relaxed to  certain  extent  actually  it  can  be 
relaxed to any bounded random variable, but the proof and the idea is similar. So, let us  
first see the most basic version which is  {0 ,1} independent random variables, but they 
need not be identically distributed. not necessarily identically distributed then for if you 

denote the ∑ X i if this is the sum random variable and μ is expectation of X and we have 

a lower bound and upper bound on  μ. So, L is a lower bound on  μ and U is an upper 
bound on μ and δ  greater than 0 for this what we have is 2 inequalities probability that X 
takes value greater than equal to (1+δ ) times the upper bound is less than equal or strictly 

less  than  ( eδ

(1+δ )1+δ )
U

.

 This is the  probability that X takes more than (1+δ ) times upper bound value. And the 



lower side also we have similar inequality probability that X is less than equal to (1−δ )L 

this is less than ( e−δ

(1−δ )1−δ )
L

 ok. So, this is the most common version of Chernoff bound 

which bounds the probabilities that X takes value more than (1+δ ) times upper bound of 

the mean and probability that X takes value  (1−δ ) times lower bound of the mean. A 

very easy generalization of standard generalization is to generalize this  {0 ,1} random 

variable  to  {0 , ai} random variable. So, we have so, let us write that theorem we have 

0≤ai≤1 for  all  i∈ [n ].

 ok and the everything else remains same only is X i is {0 , ai} random variable ok. That 

means, it takes value 0 with certain probability and value ai with remaining probability 
everything else remaining the same as earlier theorem. what we have? We can prove the 
same  bound  that  probability  that  X  is  greater  than  equal  to  (1+δ )U .  is  less  than 

( eδ

(1+δ )1+δ )
U

 the  probability that X is less than equal to  ( e−δ

(1−δ )1−δ )
L

 ok. So, we will 

prove this  more general Chernoff bound this is theorem 2 let us call it theorem 2 and the 
earlier  one  is  theorem  1.

 So, theorem 2 implies theorem 1. So, we will prove theorem 2, but for that we will need 
a more basic probabilistic inequality which is  called Markov's inequality let  us write 
Markov's  inequality.  let  X  be  a  non-negative  random  variable  that  means,  it  takes 
negative value any negative for any negative value it takes ah that value with probability  
0  for  discrete  random variable.  For  continuous  random variable  it  means  that  entire 
probability mask is on positive part of real line ah. Then for any a positive probability  

that  X  takes  value  greater  than  equal  to  a  is  less  than  equal  to  
E [X ]
a

 ok.

 So, proof I am leaving it as homework easy proof. you may assume that X is discrete  
random variable taking only finitely many values which is enough for our purposes proof 
is homework ok. Now, with this Markov inequality let  me prove theorem 2 proof of 
theorem 2. So, in theorem 2 we have two inequalities one is upper bounding X another is 
lower bounding X again we prove only one say the first one because the second one the 
proof  is  exactly  analogous.  So,  proof  of  the  first  inequality  ok.

 First you observe that if expectation of X is 0 there is nothing to prove. If expectation of 

X is 0 because X is a ∑ X i and each X i takes value {0 , ai}. If expectation of X is 0 that 

means,  X  takes  value  0  with  probability  1  that  means,  each  X i takes  value  0  with 
probability 1. So, if expectation of X is 0 then X equal to 0 and  the bound the inequality 
holds ok. So, assume without loss of generality that expectation of X is greater than 0.



 if expectation of X is greater than 0, then that means, there exists an  i∈[n] such that 
expectation of X i is greater than 0. So, we ignore all X i whose expectation is 0. we ignore 

all  X j j∈[n] such that  expectation of  X jis  0.  So,  without  loss  of  generality  we can 

assume by renaming that expectation of X i is greater than 0 for all i=1 ,…,n. So, assume 

without loss of generality that expectation of X i equal to pi which is probability that X i 

takes value or let us assume expectation of X i is ai pi which is ai times the probability that 

X i takes  value  ai.

 that means,  pi equal to probability that  X i takes value a i this is greater than 0 for all 

i∈[n] ok. So, then what is expectation of X? Expectation of X is ∑i=1

n
ai pi. Now, for any 

t greater than 0 probability that X is greater than (1+δ )μ because t is positive this is same 

as the probability that tX is greater than t (1+δ )μ I do not want to write μ I want to write 

you see here I am interested in probability of this event. Now I take exponent on both 

side because ex is an increasing function this probability remains same increasing strictly 

increasing  function  and  continuous  etX is  greater  than  et (1+δ )μ.

 Now, we apply Markov's inequality and using Markov's inequality I write that this is 

Markov's inequality on etX treating it as a random variable this is expectation of  etX by 

et (1+δ )μ. So, in the remaining part of the proof we will find out e to the what is expectation 

of  etX a good upper bound of it and plug the value here and choose a value of t which 
gives the best inequality. So, these are the two steps which will give us the required 

bound. So, what is expectation of  etX? This is  expectation of  etX is  ∑i=1

n
X i.  This is 

expectation  of  ∏i=1

n
et X i.

 Now, because x i s are independent that is a very crucial assumption in Chernoff bound, 
this I can push this expectation inside the product, this is where I am using independence 

of  X1 ,…, X n expectation of  et X i. Now, what is expectation of  et X i let us compute it.  X i 

takes value 0 X i takes value ai with probability pi. So, this is with probability pi the value 

is value of this function is function is et ai pi plus X i takes value 0 with probability (1−pi) 

and  X i equal  to  0  value  of  et X i is  1.

 So, this is  (1−pi) this is  1+ pi e
t ai−1. Now, we apply standard inequality that  1+x≤ex 

which we can which can be shown by any standard calculus based technique. So, this is  

less than equal to ∏i=1

n
e pi et ai−1 ok, because this is, but before that let us I want to put 

this  ai here.



 So, let us do that first. So, this is less than equal to 1+ piai e
t−1. This you show that for a i 

greater than 0 less than equal to 1  et ai−1 is less than equal to  ai e
t−1. Again this can be 

shown  by  standard  calculus  of  12th  standard.

 Now, we apply the inequality that  1+x≤ex this product  i=1 ,…,n. this is  ex piai e
t−1. 

Now,  this  product  becomes  sum in  the  exponent  et−1∑i=1

n
piai.  This  is  nothing,  but 

E [X ]et−1.  Now,  μ is  a  upper  bound  on  expectation  of  X.

 So, this is less than equal to ee
t−1U . Now, I want to so, what we have shown here we 

have shown that expectation of et X is less than equal to eU et−1 for all t greater than 0. So, 
this upper bound we put it here. So, what we get is probability that X≥(1+δ )U  is less 

than equal to  eU et−1 by in the denominator we have  et (1+δ )U .  this is  
et−1

et (1+δ )U
 ok.

 Now, I want to choose  t>0 which minimizes this choose t greater to minimize these 
expression  ok.  Minimizing  this  function  is  same  as  minimizing  log  of  this  function 
because log is an increasing function. So, this is greater than 0 recall we need to pick t  
greater  than  0.

 So, by putting t=ln n(1+δ ) what we get is this is ( eδ

(1+δ )1+δ )
U

. How do you choose t? 

You just minimize this function subject to t and pick that t. So, this is what is what gives 
you  a  nice  upper  bound  on  this.  So,  similarly  you  can  show the  lower  bound  also. 

probability that X takes value less than equal to (1−δ )L is strictly less than ( e−δ

(1−δ )1−δ )
L

 

ok and then, but these expressions although they are tight you know they these are very 
hard  to  visualize.

 So, for that we use this lemma whose proof is again based on elementary calculus and I 
leave  it  to  you  that  for  δ  in  between  0  and  1  both  inclusive.  We  can  show  that 

( eδ

(1+δ )1+δ )
U

 is less than equal to e−U δ
2 /3 and for 0 less than equal to δ  less than 1, we can 

show that  ( e−δ

(1−δ )1−δ )
L

 is less than equal to  e
−L δ

2

2 . which are much more easy to work 



with inequality. So, this inequality is then we can augment and write this is less than 

equal e−U δ
2 /3 and this is less than equal to e

−L δ
2

2  ok. So, let us stop here. Thank you.


