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Lecture  38  :   Randomized  Rounding  for  Prize  Collecting  Steiner  Tree

 couple of lectures we have seen many algorithms for maximum satisfiability problem. In 
this class we will see again a randomized rounding based algorithm for price collecting 
Steiner tree problem. we have already seen 3 factor approximation algorithm for this 
problem using deterministic rounding. We will see how using randomized rounding we 
can improve this approximation factor using same linear programming relaxation. So, let 
us  see.  So,  today's  problem  is  price  collecting   tainer  tree.

 Let us recall the linear programming relaxation that we had wrote what is the what is the 
problem let us recall first I am given a graph G, a special vertex r, I want to find a tree T 
and each edge has a cost  c (e ). So, and each vertex has a penalty  π (v ). So, if I do not 

include a vertex v in my tree T then I incur a cost of π (v ) and all the edges for every edge 

there  is  a  cost   c (e ).

 So, all the edges that I use the cost is c (e ) that I pay. So, what is the and there is a special 
vertex r that must be there in the tree. So, what was the linear programming relaxation? 
So, let us write it down. We want to minimize the cost  for every edge we had a variable  
xe which in ILP formulation xe would take value 1 if edge is used in the treaty otherwise 

it should value it should take value 0 plus for each vertex v. we have a variable y v which 
will take value 1 if the vertex v is part of the tree otherwise it will take value 0 in the 
integer linear programming formulation which is the exact formulation of this problem.

 So, I pay the cost of π (v ) or penalty if y v is 0 is 1− y v ok subject to  Now what is the 

constraint? That if I look at any vertex i and if y i will be set to 1 will be allowed to set to 
1, only if there is a path from r to i. And how did we ensure that there is a path from r to  
i? That there for every cut which every subset of vertices is which is a subset of V ∖ {i } 
that means, it does not contain i, but it contains r. At least one of the edges must be 
picked that means, at least one of the xe value should be 1. So, for all vertex i∈ V  for all 

subset S⊆ V ∖ {i } such that r∈ S. If I look at the boundary edges which I denote by δ (S ).



 at least one of the edges must be picked that means, ∑ xe. If this sum is 1 then only y i 

will be allowed to set 1, in particular if this sum is 0 y i should be forced to 0. So, this is 

greater than equal to y i. ok and yr should be 1 because r is always there in the tree and 

for  all  i∈ V  y i≥0  for  all  edge  e∈ E.  xe≥0.

 So, this was the LP formulation of price collecting Steiner tree. Now, if you recall what 
we have done, we have first chosen a threshold α∈ [0 ,1 ] and in an optimal solution of 
this LP relaxation. we picked all vertices whose alpha value whose y value is greater than  

α . So, let  (x∗ , y∗ ) be an optimal solution  of the LP relaxation ok. And we picked all  

vertices  ui∈ V  such  that  y i
∗≥α  ok.

 And then we use the black box algorithm to obtain a minimum cost spanning tree or  
spanning tree with low cost on u. So, then we compute a Stainer tree on U and there we 
used a black box lemma which says that the lemma is the expected or the total edge cost 

of that tree is less than equal to 
2
α∑ ce xe

∗
 So, this is the lemma we used to bound the 

total edge cost and then subsequently bound the total penalty of missing vertices also. So, 
this was the idea. Now, what we do is instead of and then we found out what should be 
the best value of α  to get the best approximation factor and we figured out that α  should 

be equal to  
2
3

 ok. So, not this  
2
3

 with this we run the algorithm and we got a 3 factor 

approximation  algorithm.

 Now, in this randomized rounding based technique what we will do? We will choose α  
uniformly at random from [0 ,1 ]. this is the first natural thing to do. So, alpha is sampled 
uniform distribution on 0,  But here you see for small values of α  if α  is very close to 0 
then the total edge  cost of the tree becomes unbounded. So, what we do is we do not 
sample alpha uniformly from [0 ,1 ], we sample α  from uniform distribution, but not from 
[0 ,1 ] from some [γ ,1 ]. we will again choose what γ  value to choose, but again once I fix 

a γ  value the algorithm is exactly same choose an α  uniformly randomly from the closed 
interval  [γ ,1 ].

 Then once  α  is  chosen the  same algorithm as  deterministic  rounding,  you pick the 
vertices whose y∗ value is greater than equal to α  compute a Steiner tree on U and output 
that tree that is it compute a Steiner tree T on U output t that is the algorithm. And again 
this lemma also holds for whatever alpha we have chosen the total edge cost of the tree is  

less than equal to 
2
α∑ ce xe

∗
. And this is related to this term is related to this is at most  

know LP-opt this term is small. Now we are, but this cost you see is not deterministic  



because alpha is random. So, what we need to do is we need to compute here because it is  
a  randomized  algorithm  we  are  interested  in  expected  cost.

 So, here is the lemma for expected cost expectation of e in edge set of T, ce this is less 

than equal to I want to upper bound 
2
1−γ

ln
1
γ∑ ce xe

∗
 which is a deterministic quantity 

because γ  will be a constant which we will decide what  γ  to choose from the from the 
analysis of the algorithm. So, for the algorithm  γ  is constant ok. So, this proof is in 
straight forward. So, let us proof prove it. So, we had this inequality that e in edge set of  

T  ce is less than equal to  
2
α
∑ ce xe

∗
 is an optimal solution which is constant acts like 

constant  the  only  randomness  is  from  α .

 So, if I compute expectation of it, then this is less than equal to expectation 
2
α
∑ ce xe

∗
. 

Now, this sum acts like a constant 2 also is a constant. So, by linearity of expectation this 

comes out  2∑ ce xe
∗ ok and then we have expectation of  

1
α

.  Now,  α  is a continuous 

random variable distributed uniformly in the interval  [0 ,1 ].  So,  this  is  2∑ ce xe
∗ ʃ
1
α

.

 So, this is α  is random variable. So, it is dx and the probability density function is just 

pdf of  α  is because it is a uniform distribution  
1
γ

(1−γ ) which is a constant. So, let us 

write  this  integral  before.

 So, 
2
1−γ

ʃ
1
x

 is ln x ok and the limit is from γ  to 1 this is from γ  to 1. ∑ ce xe
∗. So, this is 

ln 1 which is  0− ln γ  which is  ln
1
γ

 this is  then  
2
1−γ

ln
1
γ∑ ce xe

∗
 which finishes the 

proof. So, this is the we are able to bound the expected edge cost of our solution. Next 
what I need to do we need to bound the expected penalty of the vertices which we do not 

include in the in our solution for that we prove this lemma that expectation of ∑ π (i ) the 

edge  set  of T  this  is  less  than  equal  to  
1
1−γ∑ π (i )(1− y i∗ ) ok.

 So, this what we will prove. So, once we prove this lemma bounds the expected penalty 
of the vertices that the algorithm misses. So, once we prove this lemma we have bounded 
both expected cost of edges of the edges that are part of the tree T and the total expected 
penalty of the vertices that the algorithm misses. So, recall what was u the stay terminal  

vertices which we need to connect these are all the vertices i∈ V  such that y i
∗ is greater 



than equal to α . and again observe that any vertex which is not in tree must not be in U.

 Any vertex not in the tree T is  not in u because it is a standard tree it must contain all the 
vertices of U may be some other vertices also. And that is the main idea that you know 

we do not know V [T ] with the, but we know U because u is the vertices whose y i
∗ value 

is greater than α . So, what I do first is we bifurcate this is into 2 terms. Now, we do not 
know  V [T ],  but  we  know  that  V [T ] is  a  superset  of  U.  So,  in  particular 
V [G ] ∖ V [T ]⊆ V ∖ U . So, if I just replace this V [G ] ∖ V [T ] with V ∖ U , then we have 

we  have  more  terms.

 So, this is less than equal to expectation ∑ π (i ) ok good. Now, you see for every vertex 

now let i∈ V  be any vertex. So, what is the probability that i belongs to U? So, this in 

can be written down as this is ∑ π (i ) times probability that i∈ U . So, if i is any vertex 

what is the probability that i∈ U? Probability that i∈ U  you see this is 0 to 1 and there is 

some suppose here is y i
∗. Now, the probability that i∈ U  is that there is some γ  where if 

the  γ  belongs  here.

 So, this is 2 cases if γ  is greater than or equal to y i
∗. then because α  is chosen uniformly 

randomly from [γ ,1 ] and i∈ U  if and only if y i
∗≥α  then this probability is 0. because γ  is 

the smallest value that α  can take and this is the probability that because it is a continuous 
distribution probability that α  is greater than γ  is 1 in particular α  is less than equal to γ  is 

0  and  y i
∗ is  less  than  equal  to  γ .  On  other  hand  is  γ  is  somewhere  here.  then  the 

probability  that  i∈ U  is  that  α  is  in  this  region  ok.

 So, here in this case if  γ  is less than  y i
∗ in the probability that  i∈ U  is only if alpha 

belongs to this region that α  is greater than sorry α  is less than y i
∗. So, this probability is 

y i
∗−γ

1−γ
 ok. So, this thing is needed that i incur a cost if probability of i is not in γ . So, in 

particular probability that i∉ U  see if what is the probability that i∉ U  again 2 cases one 

is  γ ≥ y i
∗ star if  γ ≥ y i

∗ then it is not in there is 1. And if it is less than this then this is  

1− y i
∗

1−γ
 if  γ< y i

∗ and  in  this  is  
1− y i

∗

1−γ
.

 But in this case also when in this case in this case also you see probability of  i∉ U  

which is 1,  this is also if  you compare it  with  
1− y i

∗

1−γ
.  So, this is less than equal to. 

because in this case γ> y i. So, in both cases what we have shown is this term is less than 



equal  to  sorry  this  term  is  less  than  equal  to  
1− y i

∗

1−γ
.

 for all  i∈ V .  So, in particular what we have is combining everything expectation of 

∑ π (i ) this  is  less  than  equal  to  the  last  term  ∑ 1−γ  is  constant  comes  out 

1
1−γ

π (v )(1− y i∗ ). which is exactly what I need to prove ok. So, we have bound the total  

penalties of the missing vertices and also the total age cost of the vertices and then we 
will do the standard thing that we will pick a  γ  which balances both of them and then 
once  we  pick  the  γ  we  will  feed  it  in  this  algorithm here  and  get  our  randomized 
algorithm and then we will see what is its approximation guarantee ok. So, let us stop 
here today in the next class we will finish this


