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Lecture  37  :  Nonlinear  Rounding  for  MAX-SAT

 Welcome. So, in the last class we have seen how running both the algorithms for MAX-
SAT two algorithms for MAX-SAT and outputting the better of the two solutions gives 

us a 
3
4

 factor approximation algorithm. So, a natural question is can we design a say 
3
4

 

factor or even better approximation ratio using only linear programming rounding and the 
answer is yes and the idea is non-linear rounding. So, let us see this again a very powerful 
technique it is called non-linear randomized  rounding ok. And the idea is you know in 
the LP rounding randomized LP rounding based algorithm we used a  y∗ to use it as a 

probability with which we are setting the variable xi to be true. So, but we did not need 

not need to use y∗ as raw, we can use any function f ( y∗ ) the only guarantee is that if the 

function  maps  from  [0 ,1 ] to  [0 ,1 ].

 then it perfectly makes sense to set each variable xi to true with probability f ( y i∗ )instead 

of  y i
∗. And so, the here the art is how to choose function f so, that we can get a good 

approximation guarantee and that is what we will see now. So, the idea is  instead of 

setting variable  xi to true  probability  y i
∗, we set x i to true with probability  f ( y i∗ ) as 

usual independent of everything else. And, for this what we will see is that any function 

with  certain  property  gives  us  a  
3
4

 factor  approximation  algorithm.

 So,  let  f  be  any function   from  [0 ,1 ] closed  interval  [0 ,1 ] to  closed  interval  [0 ,1 ]
satisfying f (x )≤ 4x−1, but greater than equal to 1−4−x for all x∈ [0 ,1 ]. one can ask that 

does there indeed exist any function where which satisfy this property. Because, we do 
not  need any other  property  of  f (x ) this  there  will  exist  a  function  if  for  all  x  this 

inequality that 1−4−x is less than equal to 4x−1 if this holds. for all x in between 0 and 1 

in closed interval [0 ,1 ] then there will exist a function, but is it true? Again as usual you 

can verify that you can you can prove. So, here is a claim it needs a proof that 1−4−x is 



less  than  equal  to  4x−1 for  all  x∈ [0 ,1 ].

  In particular, there exists a function f that satisfies the above inequalities.  So, again for  
this kind of inequalities it is often easier to verify by drawing plots of the function. So, if  
I plot the function here x here y 0 1 0 1. So, if you plot  4x−1. So, at x equal to 1 this 

function  is  1  and  at  x  equal  to  0  this  function  is  
1
4

.

 So, here if it is 0.5. So, 4x−1 looks like this. This is 4x−1. On the other hand 1−4−x at x 
equal  to  0  it  is  0.

 So, it starts here and at x equal to 1 it is 
3
4

. So, it is end somewhere here. So, this is how 

the function look like and they do not cross at any point. So, these two are same at x 
equal  to  maybe  0.

5. So, what is the algorithm? So, let me write it as a theorem let ( y∗ , z∗ ) be an optimal  of 

the LP relaxation of MAX-SAT, the algorithm which sets each variable  xi to true with 

probability f ( y i∗ ) independent of everything else achieves  an approximation factor of at 

least 
3
4

. So, instead of setting each variable to true with probability y∗ we set it to true 

with probability f ( y i∗ ) ok. So, here again as usual we need to bound the probability with 

which a clause C j is satisfied. probability that C j , j∈ [m ] is satisfied this is 1 minus the 

probability  that  it  is  not  satisfied  and the  only  way it  is  not  satisfied  is  that  all  the 
variables  which appear  positively  is  said  to  false  and all  the  variables  which appear 

negatively is said to true. So, this is  1−∏❑ the probability that  xi is said to false is 

1− f ( y i∗ ) times for all  i∈ N j the probability that  xi is said to true which is  f ( y i∗ ) ok.

 Now, what is the property of function? The function is  f (x ) is in between 1−4−x and 

less and 4x−1.  1−4−x is less than equal to f (x ) less than equal to 4x−1. So, it gives us 2 

bounds we want to show this. So, we need lower bounds for  f ( y i∗ ) and  1− f ( y i∗ ). So, 

from here we get  f (x ) is less than equal to  4x−1 and  1− f (x ) is less than equal to  4−x.

 So, using these 2 bounds what we can write here is this is 1−∏ 4− y i
∗

 times ∏ 4− y i
∗+1. 

So, this is 1 – 4∑ – y i
∗+∑− y i

∗+1 . So, if you take again I want to use that I want to write this in 

terms of  z j's  and recall in the linear program we had a constraint that for all  j∈ [m ] 
∑ y i

∗+∑ 1− y i
∗.  this  is  greater  than  equal  to  z j.



 The idea being z j can be set to 1 only if this sum is at least 1. If the sum is less than 1. z j 

cannot be set to 1. So, if I take this minus outside this is 1 – 4∑ – y i
∗+∑− y i

∗+1. Now, this is 

greater than equal to z j and this is the inequality direction we need because of 2 minus 

signs.  this  is  greater  than  equal  to  1−4−z j
∗

 ok.

 And again, you look at the function. I want to write this down; I want to bring z j
∗ down 

from the exponent as a product of some constant times z j. To do that, we will again use 

the notion of concavity:  g ( z )=1−4−z is concave. On the interval (0, 1), g(0) is 1, and 

g(1)  is  also  1.  If  I  plot  a  line,  I  can  choose  any  value  of  z.

 This is z; this is g. z is less than or equal to g, and g is greater than or equal to the green  
part. The sentence So, what do we have? is indeed correct; no changes are needed. So,  
what  is  g(0)? 

 So, this is 1 g 1, which equals 1−
1
4

, resulting in 
3
4

. So, this is 
3
4

. Sorry, g(0) is 0, not 1. 

It  is  1−40,  which  equals  1.  Is  that  okay?  So,  g(z)  is  greater  than  or  equal  to  0; 

additionally,  it  is  g (0 )+ z g (1),  which  equals  0+
3
4
z.

 Therefore, this is greater than or equal to  z j
∗. Since  z j

∗ belongs to the closed interval 

[0 ,1 ], this holds for all z in the closed interval [0 ,1 ].  ALG is the ∑ w j. Therefore, the 

expectation of ALG can be expressed as the ∑ w j multiplied by the probability that  z j 

satisfies  C j for  j∈ [m ].  This  is  greater  than  or  equal  to  
3
4

 because  each  of  these 

probabilities  is  greater  than  or  equal  to  
3
4
z j
∗
 .

 So, this is greater than or equal to the  ∑ 3
4
w j z j

∗ ,  and the  ∑ w j z j is the objective 

function  of  this  LP  relaxation,  while  y∗ and  z∗ are  the  optimal  values.  So,  this 
summation  represents  the  optimum  of  the  linear  programming  problem. 

  The  approximation  factor  of  our  algorithm  is  at  least  
3
4

.

 A natural question is whether we can obtain an approximation factor for this problem 
that is better than 3/4. The original sentence is indeed grammatically correct. There is no 
need for any corrections. We partially answer this in the sense that if we use that linear 



programming  relaxation,  we  cannot  have  an  algorithm better  than  3/4.  The  original 
sentence  is  indeed  grammatically  correct,  so  no  changes  are  necessary.

 However, if you would like a slightly more concise version, it could be rephrased as:  "If 

we  use  the  ∑ w j z j for  the  LP relaxation  to  bound  the  optimal  value,  we  find  that 

opt≤∑ w j z j since it  is a maximization problem."  This version removes the comma 

before "since," which is acceptable in this context. Then there is no better approximation 
algorithm than a factor of 3/4. The sentence is indeed grammatically correct; no changes 
are necessary. The sentence is already correct as it is: "What is the integrality gap?" The 
integrality  gap  occurs  when  we  have  an  integer  linear  programming  (ILP)  problem.

 So, it is the maximum of all ILPs for I, which means the best integral solution you can 
obtain  from  the  LP  optimum  of  I.  This  applies  to  a  maximization  problem;  for  a 
minimization problem, you should consider how to define it in a very natural way. Now, 
this is the same as saying that ILP optimization is equivalent to optimization.The reason 
for this is that if you look at an instance of the lower bound, we need to show that it is  

greater  than  or  equal  to  
3
4

 I  just  need to  provide  an instance where  this  value  is  at  least  
3
4

.  So,  consider  this 

instance: x₁ or x₂, x₁̅ or x₂, x₁ or x₂̅, and x₁̅ or x₂. This means that all four possible clauses 
for using these two variables are included. Obviously, the optimal value, which is equal 
to  the  ILP  optimal  value,  is  3.

 No matter how you assign  x1 and  x2,  exactly one of these four clauses will  remain 

unsatisfied, while the other three clauses will be satisfied. On the other hand, if you write 
down the LP, take it as homework to write down the LP relaxation and show that the 

optimal value of the LP is equal to 4. Hence, the maximum of  
opt ( I )

LP−opt ( I )
  is greater 

than or equal to 
3
4

. Thank you!


