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Lecture  36  :  Best  of  Two  Solutions  for  MAX-SAT

 Welcome. So, in the last couple of lectures we have seen few randomized algorithms for 
MAX-SAT problem. In this lecture we will again you see very powerful technique that 
often if we have more than one algorithm for a problem, then running all the algorithms 
and outputting the best  ah um solution is a good idea. So, the technique let us call it 
choosing better of many solutions . So, the technique choosing better of best of  many 
solutions output  by different  algorithms.  So,  our problem is  MAX-SAT and the first 
algorithm that  we  have  seen  simply  sets  each  variable  to  true  and  false  with  equal 
probability  independent  of  everything  else.

 So, I will go set each variable to true or false with equal probability  independent of 
everything else. So, if I have a clause C j with l j many literals, then that clause is satisfied 

by this algorithm with probability 1−2−l j. A clause C j with l j  literals is satisfied by this 

algorithm with probability 1−2−l j. This is so, because there is exactly one assignment for 
each  literal.

 and in particular there are 2 to the power 1 of 2l j many assignments of this l j literals 1 

assignment makes the clause  C j not satisfied. Every other assignment out of 2 to the 

power l j assignments of this  l j variables satisfies this clause. And the second algorithm 
So, let us take the randomized rounding based algorithm which first writes down the 
integer  linear  programming  formulation.  and  then  relaxes  it  to  linear  program  LP 
formulation and then uses the variables y i's to set the variables in the formula true with 

probability  y j ok.  We  start  with  the  optimal  solution  of  the  linear  program.

 So, that is our algorithm 2. So, what is algorithm 2? Solve  the relaxed LP formulation of 

MAX-SAT.  Let  ( y∗ , z∗ ) be  an  optimal  solution  Boolean  variable  xi to  true  with 

probability y i
∗ independent of everything else ok. Here we saw that a clause C j with l j 



literals  is satisfied with probability 1−(1− 1l j)
l j

z j
∗
 with probability greater than equal to 

this  ok.  So,  what  is  our  algorithm?  Our  algorithm  is  run  these  two  randomized 
algorithms, each algorithm gives me a solution, we check which algorithm satisfies which 
algorithm which  assignment  is  better  that  means,  which  algorithm has  more  sum of 
weight  of  satisfied  clauses  and  an  output  the  algorithm.

 we  run  both  the  algorithms.  f 1 : {x1 ,…, xn}→ {true , false } and 

f 2 : {x1 ,… , xn}→ {true , false } be  the  assignments  output  by  the  algorithms.  we  check 

which between f 1 and f 2 maximizes the weighted sum of satisfied clauses and output it 
ok.

 So, for this approach to work  it should be possible to evaluate the goodness of a solution 
because this is required. Next we show that the performance guarantee the approximation 
factor is of this algorithm is better than the approximation factor of both ALGO-1 and 
ALGO-2 and which is surprising and which is often the case of this kind of algorithms 
and the intuitive idea is that ALGO-1 works better if the clauses are large. For example, if 
l j is large then this probability is close to 1. So, ALGO-1 works better if l j is large. if l j is 

large  with  close  to  1  probability  the  clause  is  satisfied.

 On the other hand if l j's are small for example, if l j is say 1 then it is 1. So, just z j
∗ and 

∑ z j
∗ is LP opt remember. So, this ALGO-2 is better if  l j is small. So, the instances 

where the output  where the algorithm each of  this  algorithm works works better  are 
disjoint and complementary that is important. So, the this is the intuition the region of  
inputs where l go 1 is ah works better is complement this is the idea not the precise  
mathematical statement complement to the complement of the region of inputs where 
algo  2  is  better.

 Hence, not surprising if on any instance if I run the run both the algorithms and output 
the better solution, then for all  inputs the overall output of this algorithm this master  
algorithm which  runs  both  the  algorithms  and  outputs  the  better  solution  has  better 
approximation guarantee and this is what we show in the next theorem. our algorithm has 

an approximation factor of at least 
3
4

 proof. So, let W 1 be the random variable denoting 

the value of the solution. output by ALGO-1 and W 1 and W 2. ALGO-1 and ALGO-2  So, 
what is the ALG then? ALG is the value of the solution output by this master algorithm.

 So, ALG is by definition max of W 1 and W 2 and to show I want to show that expectation 



of alg which is expectation  max of W 1 and W 2 is greater than equal to 
3
4

 times opt that is 

what I want to show. So, to obtain that we need to use the inequality  that max of W 1 and 
W 2 is greater than equal to the average. because expectation of max it is not need, but if it  

is sum we know that we can apply or use linearity of expectation. So, expectation of max 
taking  expectation  on  both  side  max  of  W 1 and  W 2 this  is  greater  than  equal  to 

E[W 1

2
+
W 2

2 ].  Applying  linearity  of  expectation  this  is  
1
2
E [W 1 ]+

1
2
E [W 2 ] .

 ok and we know that expectation of W 1 it satisfies each clause with this much probability 

1−2−l j and  so,  the  expectation  of  W 1 is  ∑ j=1

m
w j(1−2

−l j),  here  half  is  there 

+1
2 ∑ j=1

m
(1−(1− 1

l j
)
l j

)w j z j
∗ ok. Now, I want to write it together. So, this is recall z j

∗ lies 

in  between  0  and  1.  So,  this  is  greater  than  equal  to  there  is  a  times  1.

 So, 1 is greater than equal to  z j
∗. So, if I replace this 1 with  z j

∗ I get a lower bound. 

∑ j=1

m
w j z j

∗(1−2−l j).  So,  let  us  put  half  also  inside.  sorry  half  inside  plus 

+1
2 ∑ j=1

m
(1(1− 1

l j
)
l j

)w j z j
∗ ok.

 So, now what we will show that. claim that this term is greater than equal to 
3
4

 for all 

integer l j≥1. So, we will prove this shortly, but assuming this then we what we have is 

this is greater than equal to 
3
4∑ j=1

m
w j z j

∗ and this is nothing, but LP of the relaxed LP. 

So, this is equal to 
3
4
LP−opt  which is greater than equal to 

3
4
opt  ok. So, all we need to 

show  is  this  claim  that  this  term  is  greater  than  equal  to  
3
4

 for  all  integer  l j≥1.

 So, let us prove that claim. for every integer l≥1 average of (1−2−1) and (1−(1−1
l
)
l

) 

this  is  greater  than equal  to  
3
4

.  So,  for  l=1.  what  is  this?  This  is  
1
4

 and this  is  
1
2

.

 So,  this  is  
3
4

.  So,  for  l=1 this  is  true  for  l=2 let  us  see  what  it  is 

1
2
(1− 1

4
)+ 1
2
(1−(1−1

2
)
2

) which is 
3
4

. So, for l=1 and 2 it holds now we will prove it for 



l≥3. for L greater than equal to 3, what we have is you can show that (1−(1−1
l
)
l

) this is 

greater  than  equal  to  1−1
e

.

 ok. The idea is as l tends to infinity this tends to as l tends to infinity this (1−1
l
)
l

 to 
1
e

 

from bottom from left side. So, this is at least  1−1
e

 when l≥3, this you can verify and 

prove also. And (1−2−1) Now, for l=3 this is 
7
8

 and 1−1
8

 it is 
7
8

. So, if l is more then 2−l 

is  even  smaller  than  
1
8

.  So,  this  is  greater  than  equal  to  
7
8

 ok.

 So, 
1
2
(1−(1−1

l
)
l

)+ 1
2
(1−2−1)  this is greater than equal to this is for l≥3 

1
2
(1 – 1

e
)+ 1
2
7
8

 

which you can verify this is this is roughly 0.753 which is greater than equal to 
3
4

. So, 

this proves the claim, but how one guess this thing what is the right constant. So, for that 
what  it  is  often  useful  to  plot  these  graphs.

 So, if you simply plot these graphs ok. So, this here l is there and that probabilities can 
be  at  most  1.  So,  maybe  let  us  call  it  and  it  is  at  least  0.

5. So, let us start with 0.5 this and here it is 1 suppose it is 2, 3, 4 and so on and then if  

you plot the  first function what is 1−2−l. Now, for l=1 this is 
1
2

. So, this function is like 

is like this this this how it grows this is this is 1−2−l another function is (1−(1−1
l
)
l

) ok. 

So,  for  l=1.  So,  suppose  this  is  1  and  this  function  grows  like  and  so  on.

 So, and if you look at the maximum this is the maximum of these two functions which is 

always greater than  
3
4

. but that is not enough what we need to show is the average of 

these 2 functions is greater than 
3
4

. So, if you plot the average it looks like this. So, the 

average of these 2 functions from 2 onwards it is greater than equal to 4 between 1 and 2  

average drops below 
3
4

, but at 1 at l equal to 1 it is at 
3
4

 and because l is only integral l 

can take only integer values and that is what we need we can show we are able to show 



that the average of these two functions is at least 
3
4

 for any integer value of l greater than 

equal  to  1  ok.

 So, this is how you first get the right constant and then once you get the right constant 
you can prove it ok. So, let us stop here. Thank you.


