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 welcome. So, in the last class we have seen a √5−1
2

 factor approximation algorithm for 

MAX-SAT problem. So, in this class we will see a randomized rounding based algorithm 
for the same problem with better approximation guarantee. So, today's topic is  rounding 
of LP's for MAX-SAT. So, we first write a linear programming relaxation, first let us 
write the integer linear program and then we will relax the integrality constraints. So, for  
each  clause  C j we   have  a  variablez j  which  takes  value  1  if  C j is  satisfied.

 and 0 otherwise ok.  So,  with this  the objective function is  easy to write,  hence the 

objective  maximize∑ w j z j . Next for every variable for every variable of the MAX-

SAT formula we have a variable in linear program which will be set to true if the which 
will be set to 1 if the variable is set to true. So, for each Boolean variable  xi of max set, 

we  have  a  variable  y i which  takes  value  1  if  xi is  set  to  true  and  0  otherwise.

 So, now let us we will write the constraints. So, let us write down the integer linear 

programming formulation maximize  ∑ w j z j subject to Now consider the j-th variable. 

So, for each variable we will have a constraint which basically says that  is sz jet to 1 only 

if at least one of its literals are set to true. So, let  p j be the set of variables appearing 

positively in clause C j and n j the set of variables appearing negatively. in clause C j ok.

 So, C jwill be satisfied if one of its variable which are appearing positively is set to true 
or any of its variable which is appearing negatively is set to true set to false. So, then only 
z jwill be allowed to take value 1. So, here is the constraint  that I sum over y i's i in p j ok 

and ∑ 1− y i see if any of the variable appearing positively and it is said to true in the 

corresponding  y i will  be value will  take value 1 or  if  any of the variable which are 

appearing negatively in n j. are set to false then that y i will be set to 0 and that 1− y i this 



value  will  be  1.

 So, this sum will take value 1 if or at least 1 if C j is satisfied otherwise it take value  So, 

z j should be allowed to take value 1 if and only if this sum is greater than equal to 1. So, 

this is  z j ok yeah. Now, what are the y i's? y i's belong to {0 ,1}. for all  i∈[n] ok. Now, 

here  is  a  little  problem I  want  z j also  to  take  {0 ,1} values,  but  you know if  say 2 

variables which are appearing positively in a clause C j is said to true then the value of 

this  sum  is  greater  than  equal  to  2.

 that will allow this that will allow to set z j to value more than 1 and that is fine because 

that will even increase the objective function which we are trying to maximize. So, to 
prevent that we can make another constraint that z j should take value less than equal to 1 

and of course, it is greater than equal to 0 ok. So, this is the ILP formulation. Now, to go  
to the LP formulation,  we relax this  integrality constraint,  we replace this  integrality 
constraints with inequalities  instead of demanding y i to take value 0 or 1, we insist that y 

i  take  value  in  between  0  and  1.  So,  this  is  the  relaxed  LP  ok.

 So, what we have is opt equal to ILP of  integer linear program with the constraints that 
y i takes value either 0 and 1 and once we relax it we have a larger search space and hence 

the maximum value can only increase. So, this is less than equal to LP opt. So, LP opt is 
a upper bound on opt ok good. Now, what we do? for any rounding based algorithms 
what we first solve this relaxed LP get the optimal solution and use that as a guide to 

design a good approximation algorithm. So, solve the  relaxed LP, let  ( y∗ , z∗) be an 

optimal  solution.

 of this LP and before that before see how it can be used let us recall some inequalities 
which we will be needing. First I am writing them as fact, first is arithmetic geometric  
mean inequality AM-GM inequality. It says that for any n non-negative real numbers 
a1 ,…,an the geometric mean which is product of ai, i equal to 1 to n and then you take 

the  nth  root  geometric  mean  is  less  than  equal  to  arithmetic  mean  
1
n
∑i=1

n
ai ok.

 So, this we will use crucially and another fact if a function f (x). f (x) is concave on the 

interval closed interval [0 ,1] what does that mean ok we will see and f (0)=a f (1)=b+a
, then f (x)≥a+b x for all  x∈[0 ,1]. ok what is concave mean? So,  f (x) is concave on 

say [0 ,1]. The idea is you take an interval suppose this is [0 ,1] take the function values 
at  0  take  the  function  value  at  1  and  you  draw  this  line.

 If the graph of the function lies above it then it is concave function if this is a and this is  



b if f (x)≥a+b x and this not only for this function. So, this there is some problem with 

this picture. So, it should look like this. So, what is important is for any two point x1 , x2 

the  graph  of  the  function  lies  above  it.  So,  if  correct  it  if  for  all  0≤x1≤x2≤1.

 So,  for  every  interval  [ x1 , x2] for  all  x∈[ x1 , x2] f (x)≥f (x1)+(x2−x1) f (x2).  So,  it 

basically says that if I take any point x1 , x2 on this graph and draw this straight line the 

graph in between x1 and x2 the graph of the function f (x) in between x1 and x2 should lie 

above it.  An equivalent condition for concavity if  f  is  double differentiable then this 
double derivative should be less than equal to 0. So, if  f is double differentiable, then f is  

concave if and only if  f ’(x) is concave in say any range say  [0 ,1], then  f ’ ’(x)≤0, in 

[0 ,1].

 So, with this now we will see a randomized rounding based technique for  1−1
e

 factor 

approximation  algorithm for  MAX-SAT.  So,  here  is  theorem.  there  is  a  randomized 
rounding based algorithm for MAX-SAT. which achieves an approximation factor of at 

least  1−1
e

. So, in randomized rounding based technique whenever you have variables 

which  take  value  in  between  0  and  1,  it  is  quite  natural  to  treat  those  variables  as 
probabilities  and  used  as  those  probabilities  effectively.

 Here we want to set some values true and false to the variables of the SAT instance. for 
each such variable  xi I  have a variable  y i in  linear program programming relaxation 

which takes value in between 0 and 1. So, what I do I can a natural thing is that I can set 
xi to true with probability y i. So, our algorithm is set  xi to true with probability y i and 

false with probability 1− y i independent of  everything else ok. So, what is the now again 

we  will  see  the  same  analysis  ALG  is w1 z1+...+wm zm.

 So,  expectation  of  ALG  is  expectation  of  w1 z1+...+wm zm we  apply  linearity  of 

expectation w1E [ z1]+...+wmE [ zm] and again these are indicator random variables their 

expectations  are  the  probabilities  of  the  events.  So,  this  is  w1 probability  that  C1 is 

satisfied  probability  that  Cm is  satisfied.  So,  we  need  to  give  lower  bounds  on  the 

probability that any clause  C j is satisfied. So, what is the probability  that so, I have a 

j∈[m] probability  that  C j is  satisfied.  Again  you  see  the  only  way  it  is  it  can  be 

unsatisfied is all its positive variables are set to false and all its negative variables are set  
to  true.

 So, this is 1 minus probability that C j is not satisfied  ok and this is nothing, but 1 minus 

product over the positive terms i∈P j that they are said to false and all are all the negative 



variables they are said to true. So, this is  this is the only way it can be unsatisfied. So, 
this is greater than equal to 1 minus here I am using arithmetic geometric arithmetic mean 
AM-GM inequality that arithmetic mean is greater than equal to geometric mean. So, if I  
replace  this  geometric  means  ok.

 So, I will apply. So, this is suppose let l j is  number of literals in C j. So, this is 1 by what 

is arithmetic mean of these terms 
1
l j
∑i∈P j

(1− y i
∗) So, this should be y i

∗ because I have 

started with an optimal solution of the linear program 1− y i
∗ plus ∑i∈N j

y i
∗. So, this is the 

arithmetic mean and in geometric mean there is a 
1
l j

 term. Now, this 
1
l j

 I raise it to the 

power  here.

 This is how I apply arithmetic mean geometric mean a m g m inequality ok good. this is 

same as 1−(1− 1
l j

)∑i∈P j
y i

∗. plus ∑i∈N j

1− y i
∗. So, if added and subtracted 1 in both side 

to the power l j ok. Now, you see that this one this sum  this is the LP constraint that this  
is  greater  than  equal  to  z j.

 So, what we have is because there are 2 negative terms here is 1 and here is 1 the 

direction of inequality remains same (1−
1−z j
l j

)
l j

 ok. And now you consider the function 

f this is also  z j
∗ consider the function  z j

∗ to be  (1−
1−z j
l j

)
l j

 ok. So, this is concave you 

check this is concave in or on interval [0 ,1], it is a function of z j
∗ for every l j≥1, every 

natural number l j. So, then we use that fact and we can write that  this probability at C j is 

satisfied this is greater than equal to this whole thing is greater than equal to. So, if  z j 

equal  to  0  then  this  is  f (0) is  what  is  f (0)?  f (0) is  0  and  f (1) is  1−(1− 1
l j

)
l j

 ok.

 So, f (z j
∗)≥f (0)+ f (1) z j

∗. So, this is greater than equal to (1−1
e
) z j

∗. So, this is what we 

have got probability that  C j is satisfied is greater than equal to (1−1
e
) z j

∗. Now, we put 

this here expectation of ALG. So, expectation of ALG  is then greater than equal to 1−1
e

 

and  here  we  have  w1 z1
∗+...+wm zm

∗ ok.

 this is LP opt because you see this is the optimization function and z star y star z star is a 



is an optimal solution. So, this is equal to (1−1
e
)LP−opt  which is greater than equal to 

(1−1
e
)opt . hence it is a 1−1

e
 factor randomized approximation algorithm. Again this can 

be de-randomized using method of conditional expectation I leave that as a homework 
ok. Thank you.


