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 So,  in  the  last  class  we  have  seen  the  method  of  conditional  expectation  for  de 
randomizing randomized algorithms and this technique is quite general it can be used for 
de randomizing various randomized algorithms many of them discussed in the in this 
course and we will mention it and you can take it as a homework to use the method of  
conditional expectation to derandomize them. we will mention when it is the case when it  
is easy to randomize it. So, again we resume our journey to see randomized sampling for  
designing approximation algorithms and again we revisit the MAX-SAT problem. So, 
can  we  look  at  the  MAX-SAT problem.  So,  let  us  study  the  weighted  MAX-SAT.

 And, what is the randomized algorithm? We simply set each variable to true or false with 
equal probability. So, one can ask is it the best thing? or setting the variables to true with  
probability p for some value of p in between 0 and 1 and false with probability 1−p can 
give us better bound. So, we will see that we can choose p more judiciously to get better 
approximation  guarantee.  So,  the  idea  is  you  flip  biased  coins.

 So, for simplicity let us assume that there is no clause which is which contains exactly  
one literal and that literal is a negated literal. That means, there is no clause which is just  
say  x̄10.  So,  we  will  remove  this  assumption  later.  So,  assume  not  without  loss  of 

generality.  will  see  later  how  we  can  get  rid  of  this  assumption.

 Assume there is no clause which is ah negation of one variable ok. So, single variable  
clause are allowed, but they should appear positively. So, what is the algorithm? Again 
we  set  each  variable  xi  to  true  with  probability  p  and  false  with  probability  1−p 

independent of everything else ok. So, let us see what we have achieved. So, we can 
prove  this  lemma.

 our algorithm satisfies each clause with probability at least minimum of p and  1−p 
square assuming that assuming that there is no clause which is just a negation of one 



variable ok. let C j be any arbitrary clause. There can be 2 cases that there exist a variable 

which appears positively in  C j case 1. there is a variable that appears positively in  C j. 

that  variable is  set  to true with probability p our algorithm sets  that  variable to true 
probability  p.

 Hence, C j is satisfied with probability  at least p which is in term in term greater than 

minimum of p and 1−p2. So, case 1 is resolved case 2.  C j does not have any variable 

appearing  positively.  Now,  from  our  assumption  if  C j does  not  have  any  variable 

appearing positively, then it  cannot contain only one variable. So, by our assumption 
since  C j does not contain  any positive variable, it  must contain at least 2 variables.

 appearing negatively. Hence, C j is satisfied with probability  at least again let us argue 

what is the probability that probability that it is not satisfied for it to be not satisfied all its  
variables because they are appearing negatively all of them should be said to false all of 
them are appearing negatively. So, all of them should be said to true. So, for C j to be not 

satisfied all of its variables should be set to true and it has at least 2 variables. So, the 

probability that all of the variables is set to true is at most p2 and so, hence the probability 

that C jis satisfied is at least 1−p2 which in turn is less than equal to  minimum of p and 

1−p2.

 So, this concludes the proof. So, the idea is we pick p. So, again the same analysis that 

our algorithm has a minimum of p comma 1−p2 approximation factor. the approximation 

factor of our algorithm is at least  minimum of p and 1−p2 ok. Proof is again very similar 
what  is  ALG?  ALG  is  recall  we  had  indicator  random  variables.

 and these are the weights  w1Z1+w2Z2+...+wmZm.  So,  what  is  expectation of  ALG? 

expectation  of  w1Z1+w2Z2+...+wmZm.  Again  we  apply  linearity  of  expectation  this 

constant  terms  come  out  w1E [Z1]+w2E [Z2]+...wmE [Zm].

 This is equal to  w1 times probability that expectation of  Z1,  Z1 is a indicator random 

variable expectation is the probability that C1 is satisfied plus up to wm times probability 

that Cm is satisfied. Each of this probability is less than equal to minimum of p and 1−p2. 
So, this is no this is greater than sorry  at least each of this probability is at least minimum 

of p and 1−p2. Each clause is satisfied with probability at least minimum of p and 1−p2. 
This  is  greater  than  equal  to  minimum  of  p  and  1−p2 (w1+...+wm).

 (w1+...+wm) this is the upper bound on opt. So, this is greater than equal to minimum of 

p and  1−p2 times opt ok. So, we want to pick p so that minimum of p and  1−p2 is 



maximized. So, choose p so that minimum of p and 1−p2 is  maximized and what we 

should choose? We should choose p so that  p=1−p2 because larger p increases p and 

smaller  p  increases  1−p2.  So,  the  right  balance will  be  the  p  which maximizes  this 

minimum  is  the  p  where  p  and  1−p2 meet.

 So, p equal to p=1−p2. p2+ p−1=0. So, p=−1+√5
2

. which is roughly 0.618. So, we 

have a 0.618 factor approximation algorithm because the approximation ratio is minimum 

of p and 1−p2. So, for p equal to √5−1
2

 the approximation ratio  of our algorithm is this 

p which is  √5−1
2

.  which is roughly 0.618 which is greater than half.  So, under that 

assumption that there is no clause which is just one variable appearing negatively we 
have  a  better  than  half  factor  approximation  algorithm.

 Next what we do we want to get rid of that assumption. So, for that we need a better  
bound on opt here we have used that opt is greater than equal to  opt is less than equal to 
w1+w2+...+wm. So, we need to improve this bound. So, how? So, for that again we make 

an  assumption,  but  that  assumption  is  without  loss  of  generality.  without  loss  of 
generality  that  for  every  variable  index  i  the  weight  of  unit  clause   xi.

 Unit clause means a clause which has just one variable which is xi, if there is no such 

variable then the weight of that clause that weight we are saying 0. The weight of unit  
clause  xi is  at  least  the weight  of  unit  clause  x̄i ok.  So,  why this  is  without  loss  of 

generality? Because if it is not the case, if there exist an i such that the weight of  xi is 

strictly less than the weight of x̄i then we can replace xi with x̄i
' in all the variables and 

solve it  and then you see we have this assumptions are made. So, this assumption is 
without  loss  of  generality.  Now,  let  v i be  the  weight  of  the  unit  clause  x̄i.

 Now, whatever you set if xi you set to true then you does not satisfy this unit clause x̄i 

and hence you lose score or point of  v i from total  ∑ w i and other on the other hand if 

you set xi to false then you satisfy this clause x̄i, but you does not satisfy the unit clause 

xi and there you lose at least  v i because of this assumption which is without loss of 

generality. So, hence what we can see is opt is greater than equal to ∑i=1

m
w i this was the 

upper bound that sorry opt is less than equal to this was the upper bound i we used and 
for each variable it has to lose at least v i. So, make it j because these are clauses. just for a 

cement respecting the semantics that we are using nothing mathematically wrong minus 

∑i=1

n
v i ok.



 Now, here is  a.  So,  let  me write the thing why this observation that  for each i  any 
assignment to xi can satisfy exactly one of xi. and one of unit clauses xi and x̄i. Hence or 

the weight of x̄i is v i and the weight of unit clause xi is at least v i. So, any assignment the 

total  sum  of  weights  of  the  clauses  satisfied  is  at  most  this.  less  than  equal  to 

∑ j=1

m
w j−∑i=1

n
v i.  So,  now,  we prove that  this  is  again  √5−1

2
 factor  approximation 

algorithm  by  choosing  p  equal  to  √5−1
2

.

 Setting p equal to  √5−1
2

 our algorithm achieves an approximation factor of at least 

√5−1
2

 ok. And the analysis is exactly as usual like before with slight tweak. So, let us  

see ALG is again same as  w1Z1+...+wmZm. So, expectation of ALG is expectation of 

w1Z1+...+wmZm.  This  is  again  I  will  apply  linearity  of  expectation 

w1E [Z1]+...+wmE [Zm] ok.

 And expectation of  Z i as usual there each is greater than equal to minimum of p and 

1−p2, but if I set p like this then minimum of p and p and 1−p2 is p. So, this is greater 
than equal to p times  w1+...+wm ah . So, here we need to use the fact that these holds 

only if these we cannot use these holds only if there are no unit clause with negated 
variables. So, for that what we let u subset of m be the  set of clauses, set of all clauses  
except unit negated variables. So, what we do here  we first write it as this is greater than 

equal  to  I  sum  over  all  those  clauses  in  U  ∑ j∈U
w j E [Z j ].

 Now, it holds because U this set of clauses does not contain any negative variables. So, 

this is greater than equal to p times  ∑ j∈U
w j ok. And this is what is exactly p times 

∑ j∈U
w j minus  v i because for each variable we are we are removing we are the unit 

clause which is the negation of the variable and the rest is u i equal to 1 to n, but this is  
greater than equal to opt this is greater than equal to p times opt this holds for p equal to 

√5−1
2

. Recall this was minimum of p and 1 minus p square and for p equal to √5−1
2

 p 

and  1−p2 is  same.  So,  this  is  the  p  factor  approximation  algorithm  without  any 
assumption on the clauses ok. So, let us stop it.


