
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 07

Lecture 34

Lecture 34 : Flipping Biased Coin for Better Than .5 Approximation Algorithm for Max-
SAT

 So, in the last class we have seen the method of conditional expectation for de
randomizing randomized algorithms and this technique is quite general it can be used for
de randomizing various randomized algorithms many of them discussed in the in this
course and we will mention it and you can take it as a homework to use the method of
conditional expectation to derandomize them. we will mention when it is the case when it
is easy to randomize it. So, again we resume our journey to see randomized sampling for
designing approximation algorithms and again we revisit the MAX-SAT problem. So,
can we look at the MAX-SAT problem. So, let us study the weighted MAX-SAT.

 And, what is the randomized algorithm? We simply set each variable to true or false with
equal probability. So, one can ask is it the best thing? or setting the variables to true with
probability p for some value of p in between 0 and 1 and false with probability 1−p can
give us better bound. So, we will see that we can choose p more judiciously to get better
approximation guarantee. So, the idea is you flip biased coins.

 So, for simplicity let us assume that there is no clause which is which contains exactly
one literal and that literal is a negated literal. That means, there is no clause which is just
say x̄10. So, we will remove this assumption later. So, assume not without loss of

generality. will see later how we can get rid of this assumption.

 Assume there is no clause which is ah negation of one variable ok. So, single variable
clause are allowed, but they should appear positively. So, what is the algorithm? Again
we set each variable xi to true with probability p and false with probability 1−p

independent of everything else ok. So, let us see what we have achieved. So, we can
prove this lemma.

 our algorithm satisfies each clause with probability at least minimum of p and 1−p
square assuming that assuming that there is no clause which is just a negation of one

variable ok. let C j be any arbitrary clause. There can be 2 cases that there exist a variable

which appears positively in C j case 1. there is a variable that appears positively in C j.

that variable is set to true with probability p our algorithm sets that variable to true
probability p.

 Hence, C j is satisfied with probability at least p which is in term in term greater than

minimum of p and 1−p2. So, case 1 is resolved case 2. C j does not have any variable

appearing positively. Now, from our assumption if C j does not have any variable

appearing positively, then it cannot contain only one variable. So, by our assumption
since C j does not contain any positive variable, it must contain at least 2 variables.

 appearing negatively. Hence, C j is satisfied with probability at least again let us argue

what is the probability that probability that it is not satisfied for it to be not satisfied all its
variables because they are appearing negatively all of them should be said to false all of
them are appearing negatively. So, all of them should be said to true. So, for C j to be not

satisfied all of its variables should be set to true and it has at least 2 variables. So, the

probability that all of the variables is set to true is at most p2 and so, hence the probability

that C jis satisfied is at least 1−p2 which in turn is less than equal to minimum of p and

1−p2.

 So, this concludes the proof. So, the idea is we pick p. So, again the same analysis that

our algorithm has a minimum of p comma 1−p2 approximation factor. the approximation

factor of our algorithm is at least minimum of p and 1−p2 ok. Proof is again very similar
what is ALG? ALG is recall we had indicator random variables.

 and these are the weights w1Z1+w2Z2+...+wmZm. So, what is expectation of ALG?

expectation of w1Z1+w2Z2+...+wmZm. Again we apply linearity of expectation this

constant terms come out w1E [Z1]+w2E [Z2]+...wmE [Zm].

 This is equal to w1 times probability that expectation of Z1, Z1 is a indicator random

variable expectation is the probability that C1 is satisfied plus up to wm times probability

that Cm is satisfied. Each of this probability is less than equal to minimum of p and 1−p2.
So, this is no this is greater than sorry at least each of this probability is at least minimum

of p and 1−p2. Each clause is satisfied with probability at least minimum of p and 1−p2.
This is greater than equal to minimum of p and 1−p2 (w1+...+wm).

 (w1+...+wm) this is the upper bound on opt. So, this is greater than equal to minimum of

p and 1−p2 times opt ok. So, we want to pick p so that minimum of p and 1−p2 is

maximized. So, choose p so that minimum of p and 1−p2 is maximized and what we

should choose? We should choose p so that p=1−p2 because larger p increases p and

smaller p increases 1−p2. So, the right balance will be the p which maximizes this

minimum is the p where p and 1−p2 meet.

 So, p equal to p=1−p2. p2+ p−1=0. So, p=−1+√5
2

. which is roughly 0.618. So, we

have a 0.618 factor approximation algorithm because the approximation ratio is minimum

of p and 1−p2. So, for p equal to √5−1
2

 the approximation ratio of our algorithm is this

p which is √5−1
2

. which is roughly 0.618 which is greater than half. So, under that

assumption that there is no clause which is just one variable appearing negatively we
have a better than half factor approximation algorithm.

 Next what we do we want to get rid of that assumption. So, for that we need a better
bound on opt here we have used that opt is greater than equal to opt is less than equal to
w1+w2+...+wm. So, we need to improve this bound. So, how? So, for that again we make

an assumption, but that assumption is without loss of generality. without loss of
generality that for every variable index i the weight of unit clause xi.

 Unit clause means a clause which has just one variable which is xi, if there is no such

variable then the weight of that clause that weight we are saying 0. The weight of unit
clause xi is at least the weight of unit clause x̄i ok. So, why this is without loss of

generality? Because if it is not the case, if there exist an i such that the weight of xi is

strictly less than the weight of x̄i then we can replace xi with x̄i
' in all the variables and

solve it and then you see we have this assumptions are made. So, this assumption is
without loss of generality. Now, let v i be the weight of the unit clause x̄i.

 Now, whatever you set if xi you set to true then you does not satisfy this unit clause x̄i

and hence you lose score or point of v i from total ∑ w i and other on the other hand if

you set xi to false then you satisfy this clause x̄i, but you does not satisfy the unit clause

xi and there you lose at least v i because of this assumption which is without loss of

generality. So, hence what we can see is opt is greater than equal to ∑i=1

m
w i this was the

upper bound that sorry opt is less than equal to this was the upper bound i we used and
for each variable it has to lose at least v i. So, make it j because these are clauses. just for a

cement respecting the semantics that we are using nothing mathematically wrong minus

∑i=1

n
v i ok.

 Now, here is a. So, let me write the thing why this observation that for each i any
assignment to xi can satisfy exactly one of xi. and one of unit clauses xi and x̄i. Hence or

the weight of x̄i is v i and the weight of unit clause xi is at least v i. So, any assignment the

total sum of weights of the clauses satisfied is at most this. less than equal to

∑ j=1

m
w j−∑i=1

n
v i. So, now, we prove that this is again √5−1

2
 factor approximation

algorithm by choosing p equal to √5−1
2

.

 Setting p equal to √5−1
2

 our algorithm achieves an approximation factor of at least

√5−1
2

 ok. And the analysis is exactly as usual like before with slight tweak. So, let us

see ALG is again same as w1Z1+...+wmZm. So, expectation of ALG is expectation of

w1Z1+...+wmZm. This is again I will apply linearity of expectation

w1E [Z1]+...+wmE [Zm] ok.

 And expectation of Z i as usual there each is greater than equal to minimum of p and

1−p2, but if I set p like this then minimum of p and p and 1−p2 is p. So, this is greater
than equal to p times w1+...+wm ah . So, here we need to use the fact that these holds

only if these we cannot use these holds only if there are no unit clause with negated
variables. So, for that what we let u subset of m be the set of clauses, set of all clauses
except unit negated variables. So, what we do here we first write it as this is greater than

equal to I sum over all those clauses in U ∑ j∈U
w j E [Z j].

 Now, it holds because U this set of clauses does not contain any negative variables. So,

this is greater than equal to p times ∑ j∈U
w j ok. And this is what is exactly p times

∑ j∈U
w j minus v i because for each variable we are we are removing we are the unit

clause which is the negation of the variable and the rest is u i equal to 1 to n, but this is
greater than equal to opt this is greater than equal to p times opt this holds for p equal to

√5−1
2

. Recall this was minimum of p and 1 minus p square and for p equal to √5−1
2

 p

and 1−p2 is same. So, this is the p factor approximation algorithm without any
assumption on the clauses ok. So, let us stop it.

