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Welcome, in the last lecture we have seen deterministic rounding of linear programming
relaxation for set cover and we obtained a F factor approximation algorithm. So, today
we will see another technique which is called rounding a dual programming. So, for the
same set cover problem we can write the linear programming relaxation as follows also.
So, consider the set cover problem  and we can think of we are charging each element of
the universe some price say y i  for covering it. So, we charge y i . for the element
e i  of the universe to get it covered.  ok. And our goal is to cover all elements with

total with minimum total cost. and what is the total cost? It is sum of the costs of all

elements of the universe ∑i=1

n
yi ok. And what are the constraints? if I pick a set each

set has a cost each set S j  has a cost w j  and it can cover all elements in its set with
total  cost  at  least  W  j.

 So, for every element for every set not element  we can cover all the elements of S j
with total cost  w j . Hence, we have for every set if I sum over the elements y i  this
cost must be greater than equal to w j , this is for all j∈[m ] . We have m sets  it says
that if I charge each element e i  to y i , then all the elements in a set S j  can pay
for themselves  for getting  it  covered,  if  summation  of the charge of the costs  of the
elements is at least the weight of that set. So, what is the linear program we have? the
final  linear  program  relaxation  for  the  set  cover.  is  the  following.

 It is minimize ∑i=1

n
yi there are n elements in the universe subject to  for every set j in

the collection summation of the elements of the set their charges  y i  must be greater
than equal to  w j . ok and  y i 's are greater than equal to 0 non negative they can
cannot be negative this is for all i∈[n] . Now, we use this linear program to obtain a to



obtain a approximation algorithm for set cover. It turns out that this linear program is the
dual linear program of the earlier linear programming relaxation that we have we had
written for the set cover. This is  the dual of the linear program relaxation of the set
cover. What is the linear programming relaxation for the set cover problem we had seen
in the last class let us recall. Our goal is to minimize the sum of the weights of the sets we
pick and for every set S j  we have a variable called x j  and our goal is to minimize

that  set.  So,  minimize  ∑j=1

m
w j x j  and  the  condition  was  that  for  every  element

i∈[n]  for every element in the universe look at the sets which contains that element.
you must pick at least one such set ok. And in the exact formulation we had x j∈{0 ,1}
this was the ILP formulation  ILP−opt=opt  of the set cover and we relax this to
linear  programming  constraint  that  0≤x j≤1 ,  this  is  for  all  j∈[m ] .
 and then we observe that because assigning any value to  x j>1  can never lead to

optimal  solution  because  we  are  minimizing  ∑j=1

m
w j x j  and  the  constraint  is

∑ x j≥1 . We can also get rid of this constraint this part of the constraint and  So, you
can get rid of this part of the constraint and the final linear program that we have is x j
is  greater  than  equal  to  0.  Now,  this  linear  program  when  we  have  we  write  dual
sometimes the original linear program is called refer to as primal linear program. So, this
one  we call  primal  linear  program.  Now if  you do not  know what  is  Primal  Linear
Program, how to get dual, it is important that you learn it yourself that we assume as a
prerequisite.

 There  are  plenty  of  materials  which  available  in  the internet  and which  covers  this
Primal Linear Program, Dual Linear Program  how to obtain the dual linear program of a
given linear program and that is a fairly mechanical procedure. And if you apply that
procedure to this  primer linear  program, then you will  obtain the this  linear  program
which is the dual linear program. So, this we call the dual  The approximation algorithm
book by Williamson and Chamois also covers this primal and dual linear programs and
their  relationship  in  the  appendix  you  can  study  from there  also.  Now,  what  is  the
relationship between primal linear program and dual linear program? So, it turns out there
is something called weak duality law which let us prove in this  weak duality theorem. It
says that. Let us write that in with respect to this primal linear program and that dual
linear program. So, let  y i ,i∈[n]  be a feasible  solution of the dual LP. what is the

value of the objective function of the dual LP at this y i 's, this is the ∑i=1

n
y i  Then

∑i=1

n
yi  to  this is less than equal to this forms a lower bound of primal-opt ok. So,

any dual feasible solution what is dual feasible solution? Any assignment to the variables
y i 's  which  satisfy  this  constraints  that  is  a  dual  feasible  solution  for  at  that  dual

feasible solution the value of the dual objective function is a lower bound on the primal



optimal.

 So, let us prove it. and this is true this holds for arbitrary primal and dual corresponding
dual linear programs, but again let us prove this only for with respect to this primal and
dual linear program. So, let x j  primal opt if it exists. So, in this case it exists. So, let
we  do  not  need  to  write  that  ok.

 So, taking this primal linear program is feasible in this case for example, if we set all
x j  to be 1 that is a feasible solution. So, it take any feasible primal solution. So, let
x j , j∈[m]   be  any  primal  feasible  solution.  Now,  what  we  will  show  is  that

∑i=1

n
yi  is less than equal to the value of the primal objective at this primal feasible

solution.  So,  let  us  write  ∑i=1

n
y i  this  you  can  write  as

∑i=1

n
yi×1≤∑i=1

n
y i∑j∈[m] : ei∈S j

x j . Now, whenever we have double sum it is it is it

has  often  been  seen  that  exchanging  the  double  sum  often  gives  useful  insights.

 So, let us write it exchange the double sums. So, we write j first.  ∑j=1

m
x j∑e i∈S j

y i

 And now we use the dual constraint this constraint  that for every set S j  the sum of
the y i  values of the elements in that set is greater than equal to w j . So, this is  for

the dual linear program it should be that this should be less than equal to  ∑j=1

m
w j

whenever we have a primal program which is a minimization problem the dual must be
maximization problem. And the idea is we want to maximize the sum of the weights sum
of the charges, but for each set  S j  this is less than equal to. that total amount we
should charge is at most w j , it is like by paying w j  we can cover all elements in
that  set  S j .  So,  and  this  we  want  to  maximize.

 So, now, we use this dual linear program this is less than equal to  ∑j=1

m
w j x j . So, in

particular whenever you have a primer linear program which is a minimization problem
the dual should be a maximization problem and vice versa ok. And this is the  this is the
primal  objective,  primal  optimization  function  value.  is  the  primal  of  optimization
function value at  x j , j∈[m] . Now, because primal is a minimization problem this is
less than equal to primal of  So, we have shown that that dual any dual feasible solution if
I  have  that  dual  objective  function  is  less  than  equal  to  primal  opt.

 So, this is the weak duality theorem. Now, there is another very powerful result which is
called strong duality theorem. it says that if both primal and dual are feasible solutions if



both primal and dual linear programs  are feasible, then primal opt equal to dual opt. In
the context of set covered clearly primal is feasible we can set all  x j  to be 1 and of
course, the dual is also feasible we can set all y i 's to be 0 because w j 's are greater
than equal  to  0.  So,  we see that  for   the  primal  dual  pair  of  linear  programs of  the
weighted  set  cover  problem,  primal  opt  equal  to  dual  opt.

 Now, you see for primal opt to be dual opt. So, if I take 2. So, let  x j
∗ , j∈[m]  be a

primal optimal solution. and why I star be a dual optimal solution. this inequality, but
instead  of  y i  we  will  write  y i

∗  instead  of  x j  we  will  write  x j
∗ .

 ∑i=1

n
yi

∗  this  is  less  than  equal  to  this   this  is  less  than  equal  to

∑i=1

n
yi

∗∑j∈[m] : ei∈S j
x j

∗  this is less than equal to  this one. So, this line we have written

now we are writing this line this is less than equal to or this is equal to let us write this

line also ∑j=1

m
x j

∗∑e i∈S j
y i

∗ ok. This is less than equal to  ∑j=1

m
w j x j

∗ . Now this is

dual opt and this is primal-opt. Now for set cover we have seen that it  strong duality
theorem says that dual opt equal to primal opt that means, these two inequalities must be
equality. This is called complementary slackness condition. So, what is complementary
slackness conditions  It says that if  x∗  and ok. So, what are the conditions? So, let
(x j

∗)j∈[m]  and  ( y i
∗)i∈[n ]  be primal and dual solutions. whenever. So, the conditions

are first condition is if  x j
∗  greater than 0, then the corresponding dual constraint is

tight.

 So, for each primal variable we have a corresponding dual variable for all j∈[m ]  and
same the other way. This ensures that this first inequality  sorry this ensures that the
second inequality holds with equality tight means an equality constraint or equality or
constraint is tight means it holds with equality. In the other way if  y i

∗>0  , then the
corresponding primal constraint  is tight for all  i∈[n] . So, second condition ensures
that  the  first  inequality  this  one  holds  with  equality.  See  both  conditions  hold  both
inequalities  hold  with  equality  and that  means,  both   (x j

∗)j∈[m]  and  ( y i
∗)i∈[n ] are

optimal  solutions.

 So, it says that  (x j
∗)j∈[m]  and ( y i

∗)i∈[n ]  are primal and dual optimal solutions if 1
and  if  and  only  if   1  and  2  hold  ok.  So,  let  us  stop  here  we  will  see  how  this
complementary slackness conditions  we use it  very crucially  in algorithm design and
analysis of approximation algorithms ok. Thank you.


