
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 06

Lecture 28

Lecture 28 : 3 Factor Approximation Algorithm for Prize Collecting Steiner Tree Contd.

 Welcome.  So,  in  the  last  lecture  we  have  started  designing  a  constant  factor 
approximation algorithm for price collecting Steiner tree problem. We have written down 
the linear programming relaxation for that problem and we have seen that although there 
are exponentially many constraints. with there is a polynomial time separation oracle and 
consequently we can use the ellipsoid method to compute the optimal solution of that 
linear program in polynomial time. So, in this lecture we will see how a linear program 
optimal solution for that linear program can be used as a guide to design a constant factor  
approximation  algorithm  for  the  price  collecting  standard  tree  problem  ok.

 So, three factor three approximation algorithm  for price collecting stainer tree problem. 
So, let us recall the LP relaxation of this problem. We had a variable for each edge and a  

variable for each vertex. So, minimize ∑ ce xe+∑ π (i ) (1− y i) subject to for every set is 

subset  of  V ∖ {i } this  is  for  all  i∈ V ∖ {r } such  that  r∈ S.

 If I look at all the edges and sum them all the edges in δ (S ) this should be at least 1 at 

least 1 edge must be picked if y i is 1 otherwise there is no constraint. So, if y i is 0 that 
you see this constraints are automatically satisfied because it says that sum of sum x is  
greater than equal to 1 which is obviously, which will obviously, hold because all this x is 
can take only non negative values ok. and then we have yr equal to 1 and then we have 

for all i∈ V ,0≤ y i≤1 for all e∈ E ,0≤ xe≤1. So, we use ellipsoid method along with the 
polynomial time separation oracle to get an optimal solution for this linear program. So, 

the first  step of our algorithm is solve the relaxed LP let  (x∗ , y∗ ) be an optimal LP 

solution  ok.

 And then a natural idea is to take some value alpha and pick all the vertices whose y  
values are greater than alpha and then try to connect them with as few edges as possible.  



So, that is the idea. So, U is all the vertices  i∈ V  such that  y i
∗≥α . what should be the 

value of α  that we will see let the analysis tell what should be the value of α . And then 
build  a  mean  cost  using  U  as  the  set  of  terminals  ok.

 So, although this finding a mean cost trainer tree on a set of terminals is a NP complete  
problem, there exist approximation algorithm which we which we will use as a black box. 
and then return. So, this is the pseudo code of the algorithm ok. So, for this part we will  
use  fact  a  lemma  black  box.  the  treaty.

 So, let us number these steps this is 1, 2, 3, 4 the treaty computed at step 3 has cost  the  

sum of the edges of the trees in a tree T ce e∈ E [T ] this is less than equal to 
2
α∑ ce xe

∗
. 

So, this result we will use as a black box, there is a beautiful primal dual algorithm for  
this problem and we use that for this minimum standard tree problem and we use that as a 
black box and then let us proceed. So, now, we once we have that we have bounded the 
edge cost next word this is the edge cost of the algorithm. Now, we will bound the cost of 
the terminals. So, for that we have this lemma that  for all verticesv∈ V ∖ V [T ] that is 
the  vertex  set  of  T.

 Here you see that vertex set of T is a potentially a superset of U because it is a steiner  
tree it will pick all the stain all the terminal vertices which is U and it can pick some 

Steiner vertices. So, ∑ π (i )≤ 1
1−α∑ π (i )(1− y i∗ ) proof. Very easy. So, if i is not in the 

tree because this sum is the on the left hand side the sum is over the vertices not in the 
tree.  So,  if  i  belongs to  V ∖ V [T ] that  means,  i  is  not  in  tree  that  means,  i∈ V ∖ U  

because U⊆ V [T ]. That means, the y value y i<α  because U is the set of vertices whose 

y value is greater than equal to α . So, y i<α . So, what we have is 1− y i>1−α  which is 

same as saying 
1 – y i
1−α

>1. So, now, we start with left hand side ∑ π (i ) this is less than 

equal  to  we  have  this  1  multiplied  here  replacing  1  with  
1 – y i
1−α

.

 So, 
1
1−α∑i∈V ∖V [T ]

π (i)(1− y i
∗). And if I add some more terms because y i s take value 

in between 0 and 1, then this term cannot get decrease the sum this is less than equal to 
1

(1−α )∑i∈V
π (i)(1− y i

∗).  So, this proves this claim. So, what is ALG then? ALG is 

∑e∈E [T ]
ce+∑i∈V ∖V [T ]

π (i).



 Now, the first sum ∑e∈E [T ]
ce≤

2
α
∑e∈E [G ]

ce xe
∗ plus and this term ∑i∈V ∖V [T ]

π (i) this is 

less than equal to 
1
1−α∑i∈V ∖V [T ]

π (i)(1− y i
∗). So, we can write this as maximum of this 

2
α

 and 
1
1−α∑e∈E [G ]

ce xe
∗. plus ∑v∈V [G ]

π (i)(1− y i
∗). This is LP opt. So, this is equal to 

max {2
α
,
1
1−α

} LP opt and LP opt is less than equal to opt because it is a relaxation we 

have  increase  the  search  space.

 So, the minimum can only dropped. So, this is less than equal to max {2
α
,
1
1−α

} times 

opt. So, this is the approximation ratio  max {2
α
,
1
1−α

}. So, we need to pick  α  so, that 

max {2
α
,
1
1−α

} is  minimum.  So,  pick  alpha  so,  that   max {2
α
,
1
1−α

} is  minimized.

 That will be minimized if  
2
α
= 1
1−α

 for that the intuitive reason is choosing small  α  

increases one term and decreases other term and choosing small large  α  decreases the 
second term and increases the sorry choosing large α  closer to 1 α  should be in between 0 

and 1 choosing large α  makes the term 
1
1−α

 large than 
2
α

. So, the maximum will be ah 

minimized when both the terms are same for that we need 
2
α

 equal to 
1
1−α

 that is α=2
3

. 

So,  if  I  put  α=2
3

 you  see  both  
2
α

 and  
1
1−α

 becomes  3.

 So, this is 3 opt choosing  α=2
3

.  So, we have designed a three factor approximation 

algorithm. So, what is this algorithm? This is the pseudo code of the algorithm. So, we 

can  replace  this  α=2
3

 So,  this  is  the  complete  description  of  the  algorithm.

 Here  is  another  natural  rounding  technique.  another  natural  rounding  technique 
deterministic rounding technique is to try all possible alpha, but what do you mean by 
trying all  possible  α?  α  can take any value in between 0 and 1 and hence there are 
infinitely many possibilities. Actually if you think through it there are not because only if  
you look at the y i values and plot  suppose this is y1, this is suppose y2, suppose this is 

y3, there are some this way, suppose here is yn, there are n y values and if α  is in between 

two consecutive y values, it does not matter what is the exact value of α . it seems there 



are  uncountably  many  possibilities  for  alpha.

 trying all alpha in this set y i , i∈V  this has n points. So, if I try all this n points that is 

enough gives all possible u. So, these again are deterministic rounding. So, what is the 
algorithm? You try, so new algorithm. So, you run deterministic rounding for every alpha 

equal to y1
∗ these are stars because we we  are only working with optimal LP solutions.

 Try  α  equal  to  y1
∗ , y2

∗ , ... , yn
∗.  Let  T 1 ,T 2 ,T 3 , ... ,T n be  the  trees  output  by  the 

deterministic rounding algorithm. what you do? For every tree you compute the value of 
the  optimization  function  and  return  the  tree  whichever  minimizes  the  value  of  the 

optimization function. So, for each tree T i , i∈[n] compute ∑e∈E [T i ]
ce, this is a sum of the 

cost plus ∑i∈V ∖V [T i ]
π (i) this is the sum of the penalties omitted in the tree penalties of  

the vertices omitted in tree T i . So, for each tree compute this quantity and output the T i 

which  minimizes  the  above  sum.

 What is obvious is this is also a 3 factor approximation algorithm. the output the cost of 
the solution is at most the cost of the solution  of the deterministic rounding algorithm 

with α=2
3

. this is also a three factor approximation algorithm the new algorithm. actually 

it is better than we can show that it is a two factor approximation algorithm. Actually it is 
a  two  factor  approximation  algorithm.

 But how to prove it? Unfortunately, we do not know any direct way of proving it. The 
proof that we know is via randomized rounding of this linear program which we will see 
in the next topic, next algorithm design technique when we study  randomized rounding 
of linear programs. There we will see that a randomized rounding achieves a two factor  
approximation algorithm and from that proof we will get a corollary that which will say 
that the this deterministic rounding algorithm also has an approximation factor of at most 
two. So, let us stop here. Thank you.


