
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 06

Lecture 26
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 Welcome. So, in the last class we have seen a three factor approximation algorithm for  
scheduling jobs into one machine. to minimize the weighted completion times and for 
that  we  have  used  a  linear  programming  relaxation  in  that  linear  program  we  had 
exponentially  many constraints.  So,  today we will  see  how we can solve  that  linear 
programs those large linear programs in polynomial time. So, that is the topic of today's 
lecture.  large  linear  programs  in  polynomial  time.

 And, the idea is there are various algorithms for solving linear programs in polynomial 
time and there is a particular algorithm which is called ellipsoid method. So, we use 
ellipsoid  method.  which  not  only  solves  solves  means  computes  an  optimal  solution 
linear program in polynomial  but it does not need the explicit description. of the linear  
program.

 That  is  the most  important  point  about  ellipsoid method,  it  does like unlike typical 
algorithms it does not need the all the constraints and everything to be explicitly. Then 
what does it need? So, it  only needs access to polynomial time separation oracle. Now 
what is it? So, again suppose let us take a general linear program. So, let us consider  

general linear program. like say minimize ∑ j=1

n
d j x j subject ∑ aij x j≥bi j equal to 1 to n 

and  we  have  m  such  constraints  and  x j is  greater  than  equal  to  0  j  in  any  case.

 The running time of the ellipsoid method does not depend on m, it depends on n and the 
runtime of a polynomial time separation oracle. Now, what is a separation oracle? Given 

an assignment x̄∈Rn assignment of the variables, the polynomial time separation oracle 
oracle either outputs that  x̄ is a feasible point that means, it satisfies all constraints  it 
outputs an inequality that x̄ violates. in polynomial time in polynomial in n that is very 
important because the input to the polynomial time separation oracle is x̄. Again it does 
not take all the constraints at as input it only takes x̄ which is an n dimensional real vector 



n  time.  in  particular  the  runtime  of  the  oracle  is  independent   of  the  number  of  
constraints,  the  number  m  of  constraints  ok.

 Also  in  particular  its  input  is  just  an  n  dimensional  real  vector,  its  input   is  an  n 
dimensional real vector. So, what ellipsoid method does? all it needs it is a access to 
polynomial  time  separation  oracle.  That  means,  it  needs  it  will  give  that  oracle  an 
assignment to the variables and it that oracle needs to tell whether it is a feasible solution 
or it gives a constraint which the solution which the assignment violates. and if that is the  
case then the ellipsoid method can solve the linear program in polynomial in n time. So, 
given  polynomial  time  separation  oracle.

 the  ellipsoid  method solves  an  LP in  polynomial  in  number  of  variables.  time .  In 
particular  time  does  not  depend  on  the  number  of  constraints.  The  run  time  is 
independent of the run time of the ellipsoid method is independent  of the number of 
constraints, runtime of ellipsoid method. So, next what we will show is that for the linear 
programming relaxation for minimizing the weighted completion time of the jobs, we 
will  give  a  polynomial  time  separation  oracle.

 So, that is the next part of the lecture. Polynomial time separation oracle  for the LP  
relaxation  for  minimizing  weighted  completion  times.  So,  what  is  the  job  given  an 
assignment to the variables which are c j s those are the variables j equal to 1 to n, n was 

the number of jobs. We need to verify whether it satisfies all the constraints, whether it is 
a feasible solution and if not then we need to output a set for which it violates remember.  
So,  let  us  recall  the  LP.

 recall the LP minimize ∑ j=1

n
w jC j subject to C j should be less than equal to C j should 

be greater than equal to r j it is the release time when it is time when it is released plus p j 

this is for all jobs. So, given any assignment we can check whether it satisfies all these 
constraints all these n constraints in polynomial time because these are small number of 
constraints. The larger constraints are we have many constraints for the subsets. So, given 
an assignment we will assume without loss of generality that it satisfies all these first n 
constraints because if not then we can output simply one such constraint that it violates.  
Otherwise if it satisfies all constraints then we will cleverly check whether it satisfies all  

these  2n−1 constraints.

 And what are the constraints? Let us write it down this is ∑ j∈S
p jC j≥

1
p
(S)2 . Note that 

p(S) is like constant because they depends on input that is not variable only  C j's are 

variable. So, although there is p(S)2 it is like constant and it is a linear program and of 



course, we have  C jis greater than equal to 0 for all j in n. So, these are not required 

because we have C j≥r j+ p j and p j's are positive r j's are greater than equal to 0 ok. So, 

we  need  to  design  a  polynomial  time  separation  oracle  for  this.

 For that let C1 ,…,Cn be an assignment to these n variables. again by renaming we can 

assume that C1<C2<C3<...<Cn . So, by renaming the jobs by renaming the variables we 

assume without  loss of generality that C1<C2<C3<...<Cn ok. Now, we define this sets 

S1={1}.  S1={1 ,2} S1={1 , ... , i} and  S1={1 , ... , n}.

 So, if we have defined this n subsets of jobs and the and what we will prove is that if the  
if this variables satisfy the constraints corresponding to this n sets, then it satisfies the 
constraints corresponding to all subsets. And, hence it is enough to check whether any of 
the  constraint  corresponding  to  these  sets  are  violated,  because  if  the  constraints 
corresponding to these sets are all satisfied then we will show that all for all subsets the 
constraints are satisfied. and if not if we found one of this n sets which for which the 
constraint is not satisfied then we have got a violating constraint and that the polynomial  
time separation oracle our oracle outputs ok. So, the only because there are n sets only 
there  are  n  constraints.  So,  there  are  2n total  constraints  that  this  oracle  checks.

 So, it runs in polynomial time. So, all we need to show is that it is enough to check this n 
sets. So, here is a lemma, if the let us call this constraints say 1, if the constraints in 1  are  
satisfied for S1 , S2 ,…, Sn then 1 is satisfied for all subsets S⊆[n] proof. So, as usual what 

do we say that when do we say that a constraint is not satisfied. So, a constraint for a set  
is  not  satisfied  set  S  is  not  satisfied  if.

 So, what is the constraint? That .∑ j∈S
p jC j≥

1
p
(S)2 So, if it is not satisfied that means, 

∑ j∈S
p jC j<

1
p
(S)2. If ∑ j∈S

p jC j<
1
p
(S)2 ok. So, if so, we will show that if there exist a 

set  S  there  which  does  not  satisfy  the  constraint  that  means,  for  a  set  S  for  which 

∑ j∈S
p jC j<

1
p
(S)2,  then  we  show  that  there  exist  a  set  among  S1 ,…, Sn for  which 

violates this constraint. So, we will show  that if there exists a set subset S⊆[n] such that 

∑ j∈S
p jC j<

1
p
(S)2 then there exist an i∈[n] such that that set Si violates this constraint 

ok  and  then  that  is  enough  ok.

 So, we do it by starting with a set S assuming there exists such a set S and we iteratively 
either  remove elements or  introduce elements and ultimately get  to a  set  Si where it 

violates  the  constraint  ok.  So,  if  S  violates  the  constraint,  then  what  do  we  have 



∑ j∈S
p jC j−

1
p
(S)2 is negative, then  ∑ j∈S

p jC j−
1
p
(S)2<0 Now, any change  Now, if 

we make any change which reduce this quantity further then again then we get another 
set for which this condition is again violated. So, we make changes to S changes means 
either add element or remove element. Any any changes made to S that decreases this 

quantity  ∑ j∈S
p jC j−

1
p
(S)2 results in another set results in another set is prime which 

also violates the constraint ok. So, let us see what is the effect of when we can remove a 
job j or a job k say. Suppose, we have this for a set S and if I remove job k what property 
it should satisfy so, that this quantity decreases. So, removing a job k, removing job k 

decreases  ∑ j∈S
p jC j−

1
p
(S)2 which is already negative to begin with if S violates it.  

Removing job k decreases it  further makes it  again more negative if can it  is a easy  
exercise  take  it  as  a  homework  easy  math.

 If −pkCk+ pk p(S−k )+
1
2
pk
2<0. That is Ck> p(S−k )+

1
2
pk. So, we can remove a job k 

from S and still the condition will get violated in the resulting set if Ck> p(S−k )+
1
2
pk. 

Now,  study  when  we  can  add  a  job.  Adding  job  k  decreases  ∑ j∈S
p jC j−

1
p
(S)2 if 

pkCk−pk p(S)–
1
2
pk
2<0 which  is  same  as  saying  Ck< p(S)+

1
2
pk ok.

 So, now, we have started with a job set S for which it is violated. So, let l be the  highest  
indexed such that this job l in such that job l is in S ok. So, we can remove l from S if this  

condition satisfied. So, remove l from S if C l> p(S−l)+
1
2
pl. So, we keep removing these 

jobs until this condition or when this condition is satisfied and suppose we stop at  S’ 
when  this  condition  is  no  longer  satisfied.

 So, from that we get we keep removing until   for the highest index job l,  we have  

C l≤p(S
’−l)+ 1

2
pl,  where  l  is  the  highest  index  job  in  S’.  Next  what  I  do?  So,  if 

S’≠Sl={1 , ... , l} .  So, if  S’=Sl we do not need to do anything we have got we have 

proved that there exist a set Sl which violates this constraint. Otherwise if this then let us 

take a  k<l and  k∉S. Now notice that because we have indexed the job based on their 

finish time, their variable assignment C k we have Ck≤C l< p(S
')< p(S ')+ 1

2
pk, . Now, this 

is  exactly  the  condition  I  need  for  adding  a  job  I  can  add  job  k  to  the  set  if 



C k< p(S
')+ 1
2
pk which  is  exactly  this.

 So, we can add job k and not only job k we can keep adding all the jobs in 1 to l which 

are not in S’ because all such jobs satisfy this condition. and we keep on adding and then 
what we show that this Sl what we have obtained is Sl violates this constraint. Hence, we 

keep on adding all jobs in Sl−S
’ and because of the argument we have shown that S’ does 

not  satisfy the constraint.  So,  what  we have shown is  that  if  there exist  a  set  which 
violates the constraint, there exist a set among  S1 ,…, Sn which violates the constraint, 

which proves the correctness of polynomial type separation order. So, let us stop here.  
Thank you.


