
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 06

Lecture 26

Lecture 26 : A Polynomial Time Separation Oracle for Scheduling Weighted Jobs on a
Single Machine

 Welcome. So, in the last class we have seen a three factor approximation algorithm for
scheduling jobs into one machine. to minimize the weighted completion times and for
that we have used a linear programming relaxation in that linear program we had
exponentially many constraints. So, today we will see how we can solve that linear
programs those large linear programs in polynomial time. So, that is the topic of today's
lecture. large linear programs in polynomial time.

 And, the idea is there are various algorithms for solving linear programs in polynomial
time and there is a particular algorithm which is called ellipsoid method. So, we use
ellipsoid method. which not only solves solves means computes an optimal solution
linear program in polynomial but it does not need the explicit description. of the linear
program.

 That is the most important point about ellipsoid method, it does like unlike typical
algorithms it does not need the all the constraints and everything to be explicitly. Then
what does it need? So, it only needs access to polynomial time separation oracle. Now
what is it? So, again suppose let us take a general linear program. So, let us consider

general linear program. like say minimize ∑ j=1

n
d j x j subject ∑ aij x j≥bi j equal to 1 to n

and we have m such constraints and x j is greater than equal to 0 j in any case.

 The running time of the ellipsoid method does not depend on m, it depends on n and the
runtime of a polynomial time separation oracle. Now, what is a separation oracle? Given

an assignment x̄∈Rn assignment of the variables, the polynomial time separation oracle
oracle either outputs that x̄ is a feasible point that means, it satisfies all constraints it
outputs an inequality that x̄ violates. in polynomial time in polynomial in n that is very
important because the input to the polynomial time separation oracle is x̄. Again it does
not take all the constraints at as input it only takes x̄ which is an n dimensional real vector

n time. in particular the runtime of the oracle is independent of the number of
constraints, the number m of constraints ok.

 Also in particular its input is just an n dimensional real vector, its input is an n
dimensional real vector. So, what ellipsoid method does? all it needs it is a access to
polynomial time separation oracle. That means, it needs it will give that oracle an
assignment to the variables and it that oracle needs to tell whether it is a feasible solution
or it gives a constraint which the solution which the assignment violates. and if that is the
case then the ellipsoid method can solve the linear program in polynomial in n time. So,
given polynomial time separation oracle.

 the ellipsoid method solves an LP in polynomial in number of variables. time . In
particular time does not depend on the number of constraints. The run time is
independent of the run time of the ellipsoid method is independent of the number of
constraints, runtime of ellipsoid method. So, next what we will show is that for the linear
programming relaxation for minimizing the weighted completion time of the jobs, we
will give a polynomial time separation oracle.

 So, that is the next part of the lecture. Polynomial time separation oracle for the LP
relaxation for minimizing weighted completion times. So, what is the job given an
assignment to the variables which are c j s those are the variables j equal to 1 to n, n was

the number of jobs. We need to verify whether it satisfies all the constraints, whether it is
a feasible solution and if not then we need to output a set for which it violates remember.
So, let us recall the LP.

 recall the LP minimize ∑ j=1

n
w jC j subject to C j should be less than equal to C j should

be greater than equal to r j it is the release time when it is time when it is released plus p j

this is for all jobs. So, given any assignment we can check whether it satisfies all these
constraints all these n constraints in polynomial time because these are small number of
constraints. The larger constraints are we have many constraints for the subsets. So, given
an assignment we will assume without loss of generality that it satisfies all these first n
constraints because if not then we can output simply one such constraint that it violates.
Otherwise if it satisfies all constraints then we will cleverly check whether it satisfies all

these 2n−1 constraints.

 And what are the constraints? Let us write it down this is ∑ j∈S
p jC j≥

1
p
(S)2 . Note that

p(S) is like constant because they depends on input that is not variable only C j's are

variable. So, although there is p(S)2 it is like constant and it is a linear program and of

course, we have C jis greater than equal to 0 for all j in n. So, these are not required

because we have C j≥r j+ p j and p j's are positive r j's are greater than equal to 0 ok. So,

we need to design a polynomial time separation oracle for this.

 For that let C1 ,…,Cn be an assignment to these n variables. again by renaming we can

assume that C1<C2<C3<...<Cn . So, by renaming the jobs by renaming the variables we

assume without loss of generality that C1<C2<C3<...<Cn ok. Now, we define this sets

S1={1}. S1={1 ,2} S1={1 , ... , i} and S1={1 , ... , n}.

 So, if we have defined this n subsets of jobs and the and what we will prove is that if the
if this variables satisfy the constraints corresponding to this n sets, then it satisfies the
constraints corresponding to all subsets. And, hence it is enough to check whether any of
the constraint corresponding to these sets are violated, because if the constraints
corresponding to these sets are all satisfied then we will show that all for all subsets the
constraints are satisfied. and if not if we found one of this n sets which for which the
constraint is not satisfied then we have got a violating constraint and that the polynomial
time separation oracle our oracle outputs ok. So, the only because there are n sets only
there are n constraints. So, there are 2n total constraints that this oracle checks.

 So, it runs in polynomial time. So, all we need to show is that it is enough to check this n
sets. So, here is a lemma, if the let us call this constraints say 1, if the constraints in 1 are
satisfied for S1 , S2 ,…, Sn then 1 is satisfied for all subsets S⊆[n] proof. So, as usual what

do we say that when do we say that a constraint is not satisfied. So, a constraint for a set
is not satisfied set S is not satisfied if.

 So, what is the constraint? That .∑ j∈S
p jC j≥

1
p
(S)2 So, if it is not satisfied that means,

∑ j∈S
p jC j<

1
p
(S)2. If ∑ j∈S

p jC j<
1
p
(S)2 ok. So, if so, we will show that if there exist a

set S there which does not satisfy the constraint that means, for a set S for which

∑ j∈S
p jC j<

1
p
(S)2, then we show that there exist a set among S1 ,…, Sn for which

violates this constraint. So, we will show that if there exists a set subset S⊆[n] such that

∑ j∈S
p jC j<

1
p
(S)2 then there exist an i∈[n] such that that set Si violates this constraint

ok and then that is enough ok.

 So, we do it by starting with a set S assuming there exists such a set S and we iteratively
either remove elements or introduce elements and ultimately get to a set Si where it

violates the constraint ok. So, if S violates the constraint, then what do we have

∑ j∈S
p jC j−

1
p
(S)2 is negative, then ∑ j∈S

p jC j−
1
p
(S)2<0 Now, any change Now, if

we make any change which reduce this quantity further then again then we get another
set for which this condition is again violated. So, we make changes to S changes means
either add element or remove element. Any any changes made to S that decreases this

quantity ∑ j∈S
p jC j−

1
p
(S)2 results in another set results in another set is prime which

also violates the constraint ok. So, let us see what is the effect of when we can remove a
job j or a job k say. Suppose, we have this for a set S and if I remove job k what property
it should satisfy so, that this quantity decreases. So, removing a job k, removing job k

decreases ∑ j∈S
p jC j−

1
p
(S)2 which is already negative to begin with if S violates it.

Removing job k decreases it further makes it again more negative if can it is a easy
exercise take it as a homework easy math.

 If −pkCk+ pk p(S−k)+
1
2
pk
2<0. That is Ck> p(S−k)+

1
2
pk. So, we can remove a job k

from S and still the condition will get violated in the resulting set if Ck> p(S−k)+
1
2
pk.

Now, study when we can add a job. Adding job k decreases ∑ j∈S
p jC j−

1
p
(S)2 if

pkCk−pk p(S)–
1
2
pk
2<0 which is same as saying Ck< p(S)+

1
2
pk ok.

 So, now, we have started with a job set S for which it is violated. So, let l be the highest
indexed such that this job l in such that job l is in S ok. So, we can remove l from S if this

condition satisfied. So, remove l from S if C l> p(S−l)+
1
2
pl. So, we keep removing these

jobs until this condition or when this condition is satisfied and suppose we stop at S’
when this condition is no longer satisfied.

 So, from that we get we keep removing until for the highest index job l, we have

C l≤p(S
’−l)+ 1

2
pl, where l is the highest index job in S’. Next what I do? So, if

S’≠Sl={1 , ... , l} . So, if S’=Sl we do not need to do anything we have got we have

proved that there exist a set Sl which violates this constraint. Otherwise if this then let us

take a k<l and k∉S. Now notice that because we have indexed the job based on their

finish time, their variable assignment C k we have Ck≤C l< p(S
')< p(S ')+ 1

2
pk, . Now, this

is exactly the condition I need for adding a job I can add job k to the set if

C k< p(S
')+ 1
2
pk which is exactly this.

 So, we can add job k and not only job k we can keep adding all the jobs in 1 to l which

are not in S’ because all such jobs satisfy this condition. and we keep on adding and then
what we show that this Sl what we have obtained is Sl violates this constraint. Hence, we

keep on adding all jobs in Sl−S
’ and because of the argument we have shown that S’ does

not satisfy the constraint. So, what we have shown is that if there exist a set which
violates the constraint, there exist a set among S1 ,…, Sn which violates the constraint,

which proves the correctness of polynomial type separation order. So, let us stop here.
Thank you.

