
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 05

Lecture 25

Lecture 25 : 3 Factor Approximation Algorithm for Scheduling Weighted Jobs on a
Single Machine

 So, in the last class we have seen a two factor approximation algorithm for scheduling
jobs in a single machine for minimizing the sum of completion times. We will see a more
general problem where the jobs can have weights and the goal is to minimize the
weighted completion time sum of weighted completion times ok. So, that we will study
today. rounding based algorithm for minimizing sum of weighted completion times. So,

what is the goal? The goal is minimize ∑ w jC j . Now, for the unweighted case we have

computed the optimal preemptive schedule and we use that ordering of the of the jobs to
schedule the jobs non preemptively.

 The problem with weighted setting is that computing the optimal preemptive schedule
which minimizes the weighted sum of completion times is NP complete. So, we cannot
directly use that approach. So, computing ah schedule which minimizes sum of weighted
completion times. is NP complete even when preemption is allowed.

 Nevertheless we will see that the insights that we can draw from the proof of two factor
approximation algorithm is useful. And this is very typical in algorithm design that often
the proof of correctness reveals interesting insights which we can use for designing
algorithms. and which is very common which we will see here also. So, first what we will
do we will write a linear programming relaxation. So, we write a linear programming
relaxation why I am calling it relaxation? Relaxation is a umbrella term to relax or forget
about some constraints.

 So, the last algorithm for in the algorithm in the last class for the unweighted completion
time sum of completion times minimizing that is also relaxation because we let the
schedule being preemptive that is that requirement go and then we compute the optimal
schedule and then we use that as a guide to design our non-preemptive schedule. We will
do the same thing here. So, let us not worry about non-preemptiveness, let us first write
down the constraints. and then once we get a optimal solution that solution may be

preemptive also. So, let us see then that we again we will use to guide our non
preemptive theorem.

 So, here we have variables C j for each job j denoting its completion time. So, what do

we want? The objective function is simple, minimize ∑ w jC j and what are the

constraints we have? So, obviously, any job j cannot be started before its release time

and it needs p j amount of processing time. So, subject to for each job j∈ [n] ,C j the

completion time cannot be less than r j+ p j and we will have some other interesting
constraints. So, we will come back and write here let us first understand. So, you know in
order to introduce the second set of constraints we consider any subset S of jobs ok and

look at this term ∑ p jC j.

 Now, when does this sum is minimized? The sum is minimized only if all the jobs in S is
scheduled before any other job outside S. So, this is minimized when all the jobs in S is
scheduled before any job in [n] ∖ S ok. Now, look at this thing. So, if that is the case if

all the jobs are scheduled before then look at this term p jC j. Now, C j is the time when
the when the j-th job finishes and what is the earliest that these jobs can start these the
earliest these jobs earliest that these jobs earliest time when these jobs can starts is
obviously, 0 ok.

 Now, these jobs are scheduled in some order. So, let again rename the jobs in S take any
optimal schedule optimal non-preemptive schedule of S and rename the jobs. So, that job
1 is scheduled first then job 2 and so on. So, take any optimal schedule for s and rename
the jobs, rename the jobs so that C1≤C2 and so on. So, now, you see what is C1 equal to

then will be p1C1 is greater than equal to p1 because it can start later than 0 also.

 So, even if it starts at time 0 C1=p1 how large yeah what how small C2 can be C2is

greater than equal to C1+ p1 so which is greater than equal to sorry p1C1+ p2 which is

greater than equal to p1+ p2 and so on. So, if you look at this term ∑ p jC j Now, p j gets

multiplied with the all pk 's where k-th job is finished before j-th job. I repeat in this term
p j times C j I am multiplying p j with all pk 's where the k-th job finishes before the j-th

job. Now, before between any two pair of jobs one of them will finish before the other.
So, this term is oblivious to the optimal order that is very important.

 I do not need to know in which order an optimal schedule for S schedule them. So, this

term is can be written as ∑ p j pk. Now, this again can be rewritten as
1
2

(∑ p j)
2
+ 1
2∑ p j

2

ok. And this is greater than equal to you see j ≤ k . So, all for all jobs p j
2 is there.

 So, this is distributed here in this
1
2

 and here. So, this is greater than equal to if I remove

forget the second part second term this is
1
2

 and this one I am defining it as p (S). define

p (S) for any subset of job to be equal to ∑ p j. So,
1
2
p (S)2 . So, for every subset of jobs I

have this inequality let us write down this inequality now for all subset of jobs

∑ p jC j≥
1
2
p (S)2 .

 So, this finishes the description of linear programming rounding. Why rounding? Again
we are not taking into account various things for example, this any anything in for
example, preemption for example, here we are not considering the fact that this schedule
for every subset it cannot it cannot schedule all the jobs in S in the best possible way. So,
this is a linear programming relaxation of course, an optimal non-preemptive schedules
schedule satisfies this, but any schedule any C js may not correspond to a optimal non-

preemptive schedule. Now, what we do we have that LP we solve the LP, let {C j
∗ }j∈ [n] be

an optimal solution. Now, because any optimal solution any preemptive schedules

satisfies these constraints as we have argued. So, what we have is ∑ w jC j
∗≤opt ok.

 So, again we rename the jobs such that C1
∗≤C2

∗. We assume without loss of generality

that the processing time of every job is strictly greater than Cn
∗ ok. So, again what is the

algorithm? The algorithm is we schedule the jobs in this order non preemptively ok. So,
we schedule job 1, then job and so on ok. In particular we schedule job 1 from r1 to
r1+ p1.

 We schedule job at r1+ p1 the machine is free. So, max {r1+ p1 , r2} from this time to we

let it run for p2 amount of time max {r1+ p1 , r2}. max {r1+ p1 , r2}+ p2 and so on ok. So,

next we show that this is a three factor approximation algorithm. So, theorem our
schedule has an approximation ratio of at most 3 ok.

 So, proof slightly more involved than the earlier one, but not difficult, but before that let
us make a comment. Here we see that the number of constraints is exponentially. So, we
have exponentially many constraints because we have a we have a constraint for each
subset of n and there are 2n such subsets. if we remove the empty set then 2n−1. So, how
do we write it? Even writing it takes exponential amount of time. So, there is a method
called ellipsoid method for solving this kind of linear programs in polynomial time.

 So, we will see that we will discuss this topic in the next lecture how using ellipsoid

method we can tackle this sort of linear this sort of linear programs which has
exponentially many constraints, but polynomially many variables that is very important
and this linear programs have some special structure using which we can design what is
called a polynomial time separation oracle. So, we will discuss all these things, but for
this lecture let us assume that we can compute an optimal solution in polynomial time
because that is needed here in our algorithm here ok. So, now let us prove it. So, let as

usual let C j
N be the completion time of job n in our non-preemptive schedule. So, what

we will show? We will show that C j
N is less than equal to 3×C j

∗ for all j∈ [n].

 This will prove the theorem. this will prove the theorem. Since, ALG is ∑ w jC j
N this is

less than equal to 3∑ w jC j
∗ and that is less than equal to opt this is less than equal to

3×opt . So, let us so, all we need to show is C j
N is less than equal to 3×C j

∗.

 So, here again we observe that like in the proof of non unweighted version of the
problem, we observe that the machine is not ideal. in the time interval. Now, again focus

on only on the jth job. So, the latest that the j-th job can start is this [max❑
j r ,C j

N] ok. And

in this time interval only the jobs in 1 to j can execute and only jobs 1 to can execute in

this time interval. So, C j
N is less than equal to maxk=1

j rk+∑ p j ok. So, this again this

term we denote it by p ([j]). So, this is maxk=1
j rk+ p ([j]), this set we call this [j] is this set

{1 ,…, j } ok. So, what we will show? So, what we have argued is what we will show that

this is less than equal to 3×C j
∗.

 So, first look at this term. So, let l be the index which minimizes this. So, such that r l

equal to which maximize this r l equal to maxk=1
j rk ok. So, first observe that C j

∗ is greater

than equal to C l
∗. that is just by renaming we have renamed the jobs in such a way that

C1
∗≥C2

∗≥C3
∗≥.. . and so on. So, this we have and C l

∗ is greater than equal to r l because

we have a constraint because of these constraints.

 So, C j≥r j+ p j in particular C j≥r j. So, what we have is this that C j
∗ is greater than equal

to r l and hence what we have here this is less than equal to C j
∗ here see r l is less than

equal to C j
∗ and this term remains p([j]). This will now next we will show that p this set

1 to j this is at most 2C j
∗ which will finish the proof. So, to show that p([j]) is less than

equal to 2C j
∗ which will prove. So, for that we will use the second set of constraints.

 So, consider S={1 ,…, j} and C∗ is a feasible solution and hence it satisfies those

constraints. So, we have the constraints for this set is ∑k∈S
pkC k

∗≥1
2
p(S)2 ok. Now,

again by our relabeling we know that C j
∗≥C j−1

∗ ≥…C1
∗ is how we name the jobs.

1
2
p([j])2≤∑k∈[j]

pkC k
∗≤C j

∗∑k∈[j]
pk=C j

∗ p([j])

Now, on the other hand we have this is greater than equal to this because of this LP

constraints this is greater than equal to
1
2
p([j])2. So, again using these two what we have

is p([j]) is less than equal to 2C j
∗ which is exactly what I need to show here. Hence what

we have here is in the next step less than equal to C j
∗+2C j

∗ which is 3C j
∗ which shows

this and in particular that our algorithm is a three factor approximation algorithm ok. So,
let us stop here. Thank you.

