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Lecture 25 :   3 Factor Approximation Algorithm for Scheduling Weighted Jobs on a 
Single  Machine

 So, in the last class we have seen a two factor approximation algorithm for scheduling 
jobs in a single machine for minimizing the sum of completion times. We will see a more 
general  problem  where  the  jobs  can  have  weights  and  the  goal  is  to  minimize  the 
weighted completion time sum of weighted completion times ok. So, that we will study 
today. rounding based algorithm for minimizing sum of weighted completion times. So, 

what is the goal? The goal is minimize ∑ w jC j . Now, for the unweighted case we have 

computed the optimal preemptive schedule and we use that ordering of the of the jobs to 
schedule  the  jobs  non  preemptively.

 The problem with weighted setting is that computing the optimal preemptive schedule 
which minimizes the weighted sum of completion times is NP complete. So, we cannot 
directly use that approach. So, computing ah schedule which minimizes sum of weighted 
completion  times.  is  NP  complete  even  when  preemption  is  allowed.

 Nevertheless we will see that the insights that we can draw from the proof of two factor 
approximation algorithm is useful. And this is very typical in algorithm design that often 
the  proof  of  correctness  reveals  interesting  insights  which  we  can  use  for  designing 
algorithms. and which is very common which we will see here also. So, first what we will 
do we will write a linear programming relaxation. So, we write a linear programming 
relaxation  why I am calling it relaxation? Relaxation is a umbrella term to relax or forget  
about  some  constraints.

 So, the last algorithm for in the algorithm in the last class for the unweighted completion  
time sum of  completion  times  minimizing that  is  also  relaxation  because  we let  the 
schedule being preemptive that is that requirement go and then we compute the optimal 
schedule and then we use that as a guide to design our non-preemptive schedule. We will 
do the same thing here. So, let us not worry about non-preemptiveness, let us first write 
down the  constraints.  and then once  we get  a  optimal  solution that  solution may be 



preemptive  also.  So,  let  us  see  then  that  we  again  we  will  use  to  guide  our  non 
preemptive  theorem.

 So, here we have variables  C j for each job j denoting its completion time. So, what do 

we  want?  The  objective  function  is  simple,  minimize  ∑ w jC j and  what  are  the 

constraints we have? So,  obviously, any job j cannot be started before its release time 

and it needs  p j amount of processing time. So, subject to for each job  j∈ [n ] ,C j the 

completion  time cannot  be  less  than  r j+ p j and  we will  have  some other  interesting 
constraints. So, we will come back and write here let us first understand. So, you know in 
order to introduce the second set of constraints we consider any subset S of jobs  ok and 

look  at  this  term  ∑ p jC j.

 Now, when does this sum is minimized? The sum is minimized only if all the jobs in S is 
scheduled before any other job outside S. So, this  is minimized when all the jobs in S is  
scheduled  before any job in [n ] ∖ S ok. Now, look at this thing. So, if that is the case if  

all the jobs are scheduled before then look at this term p jC j. Now, C j is the time when 
the when the j-th job finishes and what is the earliest that these jobs can start these the 
earliest  these jobs  earliest  that  these jobs earliest  time when these jobs can starts  is 
obviously,  0  ok.

 Now, these jobs are scheduled in some order. So,  let again rename the jobs in S take any 
optimal schedule optimal non-preemptive schedule of S and rename the jobs. So, that job 
1 is scheduled first then job 2 and so on. So, take any optimal schedule for s and rename 
the jobs, rename the jobs so that C1≤C2 and so on. So, now, you see what is C1 equal to 

then  will  be  p1C1 is  greater  than  equal  to  p1 because  it  can  start  later  than  0  also.

 So, even if it starts at time 0  C1=p1 how large yeah what how small  C2 can be  C2is 

greater than equal to C1+ p1  so which is greater than equal to sorry p1C1+ p2 which is 

greater than equal to p1+ p2 and so on. So, if you look at this term ∑ p jC j  Now, p j gets 

multiplied with the all pk 's where k-th job is finished before j-th job. I repeat in this term 
p j times C j I am multiplying p j with all pk 's where the k-th job finishes before the j-th 

job. Now, before between any two pair of jobs one of them will finish before the other. 
So,  this  term  is  oblivious  to  the  optimal  order  that  is  very  important.

 I do not need to know in which order an optimal schedule for S schedule them. So, this  

term is can be written as ∑ p j pk. Now, this again can be rewritten as 
1
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ok.  And this  is  greater  than equal  to   you see  j ≤ k .  So,  all  for  all  jobs  p j
2 is  there.



 So, this is distributed here in this 
1
2

 and here. So, this is greater than equal to if I remove 

forget the second part second term this is 
1
2

 and this one I am defining it as p (S ). define 

p (S ) for any subset of job to be equal to ∑ p j. So, 
1
2
p (S )2 . So, for every subset of jobs I 

have  this  inequality  let  us  write  down  this  inequality  now  for  all  subset  of  jobs 

∑ p jC j≥
1
2
p (S )2 .

 So, this finishes the description of linear programming rounding. Why rounding? Again 
we  are  not  taking  into  account  various  things  for  example,  this  any  anything  in  for 
example, preemption for example, here we are not considering the fact that this schedule 
for every subset it cannot it cannot  schedule all the jobs in S in the best possible way. So, 
this is a linear programming relaxation of course, an optimal non-preemptive schedules 
schedule satisfies this, but any schedule any C js may not correspond to a optimal non-

preemptive schedule. Now, what we do we have that LP we  solve the LP, let {C j
∗ }j∈ [n ] be 

an  optimal  solution.  Now,  because  any  optimal  solution  any  preemptive  schedules 

satisfies these constraints as we have argued. So, what we have is  ∑ w jC j
∗≤opt  ok.

 So, again we rename the jobs such that C1
∗≤C2

∗. We assume without loss of generality 

that the processing time of every job is strictly greater than Cn
∗ ok. So, again what is the 

algorithm? The algorithm is we schedule the jobs in this order non preemptively ok. So, 
we schedule job 1, then job  and so on ok. In particular we schedule job 1 from r1 to 
r1+ p1.

 We schedule job  at r1+ p1 the machine is free. So, max {r1+ p1 , r2} from this time to we 

let it run for  p2 amount of time  max {r1+ p1 , r2}.  max {r1+ p1 , r2}+ p2 and so on ok. So, 

next  we  show  that  this  is  a  three  factor  approximation  algorithm.  So,  theorem  our 
schedule  has  an  approximation  ratio   of  at  most  3  ok.

 So, proof slightly more involved than the earlier one, but not difficult, but before that let 
us make a comment. Here we see that the number of constraints is exponentially. So, we 
have exponentially many constraints because we have a we have a constraint for each 
subset of n and there are 2n such subsets. if we remove the empty set then 2n−1. So, how 
do we write it? Even writing it takes exponential amount of time. So, there is a method 
called ellipsoid  method for  solving this  kind of  linear  programs in  polynomial  time.

 So, we will see that we will discuss this topic in the next lecture how using ellipsoid  



method  we  can  tackle  this  sort  of  linear  this  sort  of  linear  programs  which  has 
exponentially many constraints, but polynomially many variables that is very important 
and this linear programs have some special structure using which we can design what is 
called a polynomial time separation oracle. So, we will discuss all these things, but for 
this lecture let us assume that we can compute an optimal solution in polynomial time 
because that is needed here in our algorithm here ok. So, now let us prove it. So, let as 

usual let C j
N  be the completion time of job n in our non-preemptive schedule. So, what 

we  will  show?  We  will  show  that  C j
N is  less  than  equal  to  3×C j

∗ for  all  j∈ [n ].

 This will prove the theorem. this will prove the theorem. Since, ALG is ∑ w jC j
N this is 

less than equal to 3∑ w jC j
∗  and that is less than equal to opt this is less than equal to 

3×opt .  So,  let  us  so,  all  we  need  to  show  is  C j
N is  less  than  equal  to  3×C j

∗.

 So,  here  again  we observe  that  like  in  the  proof  of  non unweighted version of  the 
problem, we observe that the machine is not ideal. in the time interval. Now, again focus 

on only on the jth job. So, the latest that the j-th job can start is this [max❑
j r ,C j

N ] ok. And 

in this time interval only the jobs in 1 to j can execute and only jobs 1 to  can execute in 

this time interval. So,  C j
N is less than equal to  maxk=1

j rk+∑ p j ok. So, this again this 

term we denote it by p ([ j ]). So, this is maxk=1
j rk+ p ([ j ]), this set we call this [ j ] is this set 

{1 ,…, j } ok. So, what we will show? So, what we have argued is  what we will show that 

this  is  less  than  equal  to  3×C j
∗.

 So, first look at this term. So, let l be the index which minimizes this. So, such that  r l 

equal to  which maximize this r l equal to maxk=1
j rk ok. So, first observe that C j

∗ is greater 

than equal to C l
∗. that is just by renaming we have renamed the jobs in such a way that 

C1
∗≥C2

∗≥C3
∗≥.. . and so on. So, this we have and C l

∗ is greater than equal to r l because 

we  have  a  constraint  because  of  these  constraints.

 So, C j≥r j+ p j in particular C j≥r j. So, what we have is  this that C j
∗ is greater than equal 

to  r l and hence what we have here this is less than equal to  C j
∗ here see  r l is less than 

equal to C j
∗ and this term remains p([ j ]). This will now next we will show that p this set 

1 to j this is at most 2C j
∗ which will finish the proof. So, to show that p([ j ]) is less than 

equal to  2C j
∗ which will prove. So, for that we will use the second set of constraints.

 So,  consider  S={1 ,…, j} and  C∗ is  a  feasible  solution  and hence  it  satisfies  those 



constraints. So, we have  the constraints for this set is  ∑k∈S
pkC k

∗≥1
2
p(S)2 ok. Now, 

again by our relabeling we know that C j
∗≥C j−1

∗ ≥…C1
∗ is how we name the jobs. 

1
2
p([ j ])2≤∑k∈[ j ]

pkC k
∗≤C j

∗∑k∈[ j ]
pk=C j

∗ p([ j ])

Now, on the other hand we have this is greater than equal to this because of this LP 

constraints this is greater than equal to 
1
2
p([ j ])2. So, again using these two what we have 

is p([ j ]) is less than equal to 2C j
∗ which is exactly what I need to show here. Hence what 

we have here is in the next step less than equal to C j
∗+2C j

∗ which is 3C j
∗ which shows 

this and in particular that our algorithm is a three factor approximation algorithm ok. So,  
let us stop here. Thank you.


