
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 05

Lecture 24

Lecture 24 : 2 Factor Approximation Algorithm for Scheduling Unweighted Jobs on a
Single Machine

 welcome. So, far we have seen couple of algorithm design techniques like greedy
algorithm, local search, dynamic programming for designing approximation algorithms.
So, next we start another very powerful method which is called linear programming
rounding. So, this is the next topic. linear programming rounding. As usual let us
understand this technique using a using couple of examples.

 So, our first example is scheduling jobs on a single machine. So, what is the input? n
jobs with release dates r1 ,…,rn let us call it release time. and processing times p1 , ... , pn,

each job should be started only after its release time machine can run. at most one job at
any point of time and the schedule is non preemptive.

 that is a job once started should be allowed to finish. before allocating the machine to
some other job. So, this kind of schedules are called non preemptive schedule. And what
is the goal? What we want to minimize? Let C j be the completion time. for the j-th job in

a schedule.

 The goal is to compute a schedule which minimizes summation completion times. Note
that this goal is equivalent to minimizing average completion times because average

completion time is
∑ j=1

n
C j

n
. note that this goal is equivalent to minimizing average

completion time. So, there is a weighted version of it where each job has a weight w j and

the goal is to minimize the weighted sum of completion time ∑ j=1

n
w jC j. So, this is a

generalization of this unweighted version and what we will see that weighted version
needs a linear programming rounding.

 But, unweighted version there is a nice algorithm for the unweighted version that not
only gives a two factor approximation algorithm, but it gives a guideline and idea of how

to design constant factor approximation algorithm for the weighted version. So, let us

first see the unweighted version that means, we want to minimize ∑ j=1

n
C j all jobs has

same weight may be weight equal to 1 and then in the next lecture we will see the more
general weighted version. So, what is this? What is the algorithm? So, we know how to
minimize these sum of completion times if we are allowed preemption. We can compute
a preemptive schedule what is a preemptive schedule? Here we do not need a job once
started to run it till it is till it finishes. So, we can in the middle of its of the execution of a
job we can take the machine from the job it is like we can pause it take the machine from
the job and allocate it to some other machine and then later we can resume the processing
of the earlier job.

 So, that is called preemption schedule. So, if preemption is allowed there is a simple
algorithm which is called shortest remaining time fast which computes a preemptive
schedule which minimizes sum of completion times. We can compute a preemptive

schedule which minimizes ∑ j=1

n
C j the algorithm is called we can compute a preemptive

schedule in polynomial time. the algorithm is called the shortest remaining processing
time SRPT. So, what is the schedule? We start at time 0 and schedule a job which has
the smallest remaining processing times.

 among the jobs that are released and has not completed yet. ok and we schedule it until
either it is complete or some new job is released and then we iterate, we iterate until we
execute all jobs completely ok. Let us understand this using an example, suppose I have
3 jobs with the processing time p1 the of the first job is say 5 unit, p2 is 3 unit 1 and p3 is

4 unit and the release times are say r1 equal to 0, r2 equal to 1 and r3 equal to 2. So, at t

equal to 0 at time equal to 0 only first job is available. So, in the time from 0 to 1 job 1 is
allotted, then at time 2 at time 1 second job is released and among the jobs there are 2
jobs first job and second job.

 First job has 4 units of processing time remaining, second job has 3 units of processing
time remaining. So, second job is scheduled there t 1 to time 1 to time 2. at time 2 third
job is released again we compute what is the smallest remaining time what is which job
has the smallest remaining times it turns out that again it is the second job. So, we keep
running the second job. till it finishes which is 4 and at time 4 we have 2 jobs both have
same processing time remaining.

 So, we can schedule arbitrarily. So, maybe I schedule J 1 first from 4 to 8 and then J 3

from 8 to 12. So, this is the outcome of SRPT algorithm. Now you take it as a homework
that SRPT which is a greedy algorithm SRPT computes a preemptive which minimizes
sum of completion times among all preemptive and note that every non-preemptive

schedule is also a preemptive schedule. So, among all preemptive or non-preemptive
schedules.

 it is a greedy algorithm and you can use standard proof techniques for design for proving
the optimality of greedy algorithms. There are various proof techniques for example,
swap cut and paste and various others and it is a easy proof I will leave it as a homework.
So, from this what we get is this observation that for any set of jobs if I compute the
preemptive schedule and if cjp for any set of n jobs if the or if a SRPT schedule. SRPT
schedule need not be unique because whenever there is a tie it is an it can schedule any
jobs. For example, in the in the last example at t equal to 4 both job 1 and job 3 has 4
units of processing time remaining.

 So, we can pick any arbitrary schedule. So, this is one SRPT schedule another SRPT
schedule is J 1 J 2 J 2. then here is J 3 and here is J 1 both are SRPT schedule. So, for any set

of n jobs pick any SRPT schedule and if that SRPT schedule completes job j at C j
p, p

stands for preemptive then because SRPT is an optimal preemptive schedule and non-
preemptiveness can only increase the summation of sum of completion times because

every non-preemptive schedule is also a preemptive schedule what we have is ∑ j=1

n
C j
p

this is less than equal to opt ok. Now what is our algorithm? The algorithm is very simple
for the non-preemptive schedule which is the two factor approximation algorithm.

 Let us write two factor two approximation algorithm for non-preemptive scheduling. The
algorithm is you first compute a preemptive schedule an optimal preemptive schedule
may be SRPT. So, compute an SRPT schedule. rename the jobs based on how they ah in

which order they finish, rename the jobs such that C1
p≤C2

p≤…≤Cn
p and execute these

jobs execute these jobs in this order in non preemptive schedule. So, this is the first step
second step is output the non-preemptive schedule which executes job 1, then job 2, and
so on in particular. So, start or formally. So, first job one should be executed formally

start execution of job 1 at r1 whenever it is released and execute it till r1+ p1. So, let C j
N

be the completion time of job n in the non-preemptive schedule output by the algorithm.

That is what is C1
N? C1

N is r1+ p1 ok.

 What is C2
N? C2

N is max of C1
N and r2. So, machine the machine is blocked till C1

N and at

r2 it is job 2 is released plus p2 and so on. So, what is ALG? ALG is ∑ j=1

n
C j
N. So, what

we show is lemma that for each job for each job j∈{1 ,…,n} this set I denote by [n] this

is {1 ,…,n} C j
N can be at most 2C j

P ok. So, if I prove this then it shows it is a two factor

approximation algorithm in particular.

∑ j=1

n
C j
N≤2∑ j=1

n
C j
P≤2opt . So, when it we just need to prove this that some C j

N is less

than equal to 2C j
P and we show this by showing 2 easy lower bound. First you observe

that C j
P is greater than equal to maxk=1

j rk. So, this is the latest release time among the jobs

from 1 to j because in this set 1 to j, jth job is the last job to start and it can start latest at

maxk=1
j rk. This is obvious and also because the jobs 1 to j−1 should be finished first.

 So, C j
P should be greater than equal to ∑k=1

j
pk ok. So, these are the bounds on C j

P. Now,

by construction how we design this algorithm? by construction C j
N is greater than equal

to maxk=1
j rk. ok and what is what is C j

N of course, you see when does what is the earliest

time it can it can start it can start at maxk=1
j rk. So, C j

N is less than equal to.

 So, here is another observation is that the machine can never be ideal in the time interval

from maxk=1
j rk to and when the jobs finish j-th job finish ok. And what could be the

maximum length of this interval? The in this interval only jobs in the set from 1 to j are
executed the maximum length of this interval is only this jobs j jobs are processed. So,

the maximum it could be ∑k=1

j
pk. So, what we have is C j

N is less than equal to

maxk=1
j rk+∑k=1

j
pk both of them are less than are greater than equal both of them are

less than equal to C j
P these are the inequalities. So, this is less than equal to 2C j

P which

shows which proves the lemma and which in particular shows that these are two factor
approximation algorithm.

 So, in the next class we will see three factor approximation algorithm using linear
programming rounding for the weighted version of this problem. Thank you.

