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Lecture 24 :  2 Factor Approximation Algorithm for Scheduling Unweighted Jobs on a 
Single  Machine

 welcome.  So,  far  we  have  seen  couple  of  algorithm design  techniques  like  greedy 
algorithm, local search, dynamic programming for designing approximation algorithms. 
So,  next  we start  another  very powerful  method which is  called linear  programming 
rounding.  So,  this  is  the  next  topic.  linear  programming  rounding.  As  usual  let  us 
understand  this  technique  using  a  using  couple  of  examples.

 So, our first example is scheduling  jobs on a single machine. So, what is the input? n 
jobs with release dates r1 ,…,rn let us call it release time. and processing times p1 , ... , pn, 

each job should be started  only after its release time machine can run. at most one job at 
any  point  of  time  and  the  schedule  is  non  preemptive.

 that is a job once started should be allowed to finish. before allocating the machine to  
some other job. So, this kind of schedules are called non preemptive schedule. And what 
is the goal? What we want to minimize? Let C j be the completion time. for the j-th job in 

a  schedule.

 The goal is to compute a schedule  which minimizes summation completion times. Note 
that  this  goal  is  equivalent  to  minimizing average completion times because  average 

completion time is  
∑ j=1

n
C j

n
.  note  that  this  goal  is  equivalent  to  minimizing average 

completion time. So, there is a weighted version of it where each job has a weight w j and 

the goal is to minimize the weighted sum of completion time  ∑ j=1

n
w jC j. So, this is a 

generalization of this unweighted version and what we will see that weighted version 
needs  a  linear  programming  rounding.

 But, unweighted version there is a nice algorithm for the unweighted version that not 
only gives a two factor approximation algorithm, but it gives a guideline and idea of how 



to design constant factor approximation algorithm for the weighted version. So, let us 

first see the unweighted version that means, we want to minimize ∑ j=1

n
C j all jobs has 

same weight may be weight equal to 1 and then in the next lecture we will see the more 
general weighted version. So, what is this? What is the algorithm? So, we know how to 
minimize these sum of completion times if we are allowed preemption. We can compute 
a preemptive schedule what is a preemptive schedule? Here we do not need a job once 
started to run it till it is till it finishes. So, we can in the middle of its of the execution of a  
job we can take the machine from the job it is like we can pause it take the machine from  
the job and allocate it to some other machine and then later we can resume the processing  
of  the  earlier  job.

 So, that is called preemption schedule. So, if preemption is allowed there is a simple 
algorithm which is  called shortest  remaining time fast  which computes  a  preemptive 
schedule  which  minimizes  sum of  completion  times.  We can  compute  a  preemptive 

schedule which minimizes ∑ j=1

n
C j the algorithm is called we can compute a preemptive 

schedule in polynomial time. the algorithm is called the shortest remaining  processing 
time SRPT. So, what is the schedule? We start at time 0 and schedule a job  which has 
the  smallest  remaining  processing  times.

 among the jobs that are released and has not completed yet. ok and we schedule it until  
either it is complete or some  new job is released and then we iterate, we iterate until we 
execute  all jobs completely ok. Let us understand this using an example, suppose I have 
3 jobs with the processing time p1 the of the first job is say 5 unit, p2 is 3 unit  1 and p3 is 

4 unit and the release times are say r1 equal to 0, r2 equal to 1 and r3 equal to 2. So, at t 

equal to 0 at time equal to 0 only first job is available. So,  in the time from 0 to 1 job 1 is  
allotted, then at time 2 at time 1 second job is released and among the jobs  there are 2 
jobs  first  job  and  second  job.

 First job has 4 units of processing time remaining, second job has 3 units of processing 
time remaining. So, second job is scheduled there t 1 to time 1 to time 2. at time 2 third 
job is released again we compute what is the smallest remaining time what is which job  
has the smallest remaining times it turns out that again it is the second job. So, we keep 
running the second job. till it finishes which is 4 and at time 4 we have 2 jobs both have 
same  processing  time  remaining.

 So, we can schedule arbitrarily. So, maybe I schedule  J 1 first from 4 to 8 and then J 3 

from 8 to 12. So, this is the outcome of SRPT algorithm. Now you take it as a homework  
that SRPT which is a greedy algorithm SRPT computes a preemptive  which minimizes 
sum of  completion  times  among  all  preemptive  and  note  that  every  non-preemptive 



schedule is  also a preemptive schedule.  So,  among all  preemptive or non-preemptive 
schedules.

 it is a greedy algorithm and you can use standard proof techniques for design for proving 
the optimality of greedy algorithms. There are various proof techniques for example, 
swap cut and paste and various others and it is a easy proof I will leave it as a homework. 
So, from this what we get is this observation  that for any set of jobs if I compute the  
preemptive schedule and if cjp for any set of n jobs if  the or if a SRPT schedule. SRPT 
schedule need not be unique because whenever there is a tie it is an it can schedule any 
jobs. For example, in the in the last example at t equal to 4 both job 1 and job 3 has 4  
units  of  processing  time  remaining.

 So, we can pick any arbitrary schedule. So, this is one SRPT schedule another SRPT 
schedule is J 1 J 2 J 2. then here is J 3 and here is J 1 both are SRPT schedule. So, for any set 

of n jobs pick any SRPT schedule and if that SRPT schedule completes job j at  C j
p, p 

stands for preemptive then  because SRPT is an optimal preemptive schedule and non-
preemptiveness can only increase the summation of sum of completion times because 

every non-preemptive schedule is also a preemptive schedule what we have is ∑ j=1

n
C j
p 

this is less than equal to opt ok. Now what is our algorithm? The algorithm is very simple 
for  the  non-preemptive  schedule  which  is  the  two  factor  approximation  algorithm.

 Let us write two factor two approximation algorithm for non-preemptive scheduling. The 
algorithm is you first compute a preemptive schedule an optimal preemptive schedule 
may be SRPT. So, compute an SRPT schedule. rename the jobs based on how they ah in  

which order they finish, rename the jobs such that  C1
p≤C2

p≤…≤Cn
p and execute these 

jobs execute these jobs in this order in non preemptive schedule. So, this is the first step 
second step is output  the non-preemptive schedule which executes job 1, then job 2, and 
so on in particular. So, start or formally. So, first job one should be executed formally 

start execution  of job 1 at r1 whenever it is released and execute it till r1+ p1. So, let C j
N 

be the completion time of job n in the non-preemptive  schedule output by the algorithm. 

That  is  what  is  C1
N?  C1

N is  r1+ p1 ok.

 What is C2
N? C2

N is  max of C1
N and r2. So, machine the machine is blocked till C1

N and at 

r2 it is job 2 is released plus p2 and so on. So, what is ALG? ALG is ∑ j=1

n
C j
N. So, what 

we show is lemma that for each job for each job j∈{1 ,…,n} this set I denote by [n] this 

is {1 ,…,n} C j
N can be at most 2C j

P ok. So, if I prove this then it shows it is a two factor 

approximation  algorithm  in  particular.



∑ j=1

n
C j
N≤2∑ j=1

n
C j
P≤2opt  . So, when it we just need to prove this that some C j

N is less 

than equal to 2C j
P and we show this by showing 2 easy lower bound. First you observe 

that C j
P is greater than equal to maxk=1

j rk. So, this is the latest release time among the jobs 

from 1 to j because in this set 1 to j, jth job is the last job to start and it can start latest at  

maxk=1
j rk. This is obvious and also because the jobs 1 to  j−1 should be finished first.

 So, C j
P should be greater than equal to ∑k=1

j
pk ok. So, these are the bounds on C j

P. Now, 

by construction how we design this algorithm? by construction C j
N is greater than equal 

to maxk=1
j rk. ok and what is what is C j

N  of course, you see when does what is the earliest 

time  it  can  it  can  start  it  can  start  at  maxk=1
j rk.  So,  C j

N is  less  than  equal  to.

 So, here is another observation is that the machine  can never be ideal in the time interval 

from  maxk=1
j rk to  and when the jobs finish j-th job finish ok. And what could be the 

maximum length of this interval? The in this interval only jobs in the set from 1 to j are 
executed the maximum length of this interval  is only this jobs j jobs are processed. So,  

the  maximum  it  could  be  ∑k=1

j
pk.  So,  what  we  have  is  C j

N is  less  than  equal  to 

maxk=1
j rk+∑k=1

j
pk  both of them are less than are greater than equal both of them are  

less than equal to C j
P these are the inequalities. So, this is less than equal to 2C j

P which 

shows which proves the lemma and which in particular shows that these are two factor 
approximation  algorithm.

 So,  in  the  next  class  we will  see  three  factor  approximation  algorithm using  linear 
programming rounding for the weighted version of this problem. Thank you.


