
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 05

Lecture 23

Lecture 23 : An APTAS for Bin Packing Contd.

 In the last lecture we have started seeing an EPTAS for bin packing problem and we will
finish that idea. So, we have seen that it is enough to pack the large items either optimally
or even approximately optimally to pack all items in approximately optimal number of
bins. Recall the large items are defined by those items whose size is at least more than
gamma and the small items are items which are whose size is less than gamma. So, now,
we will see an algorithm to pack the large items in approximately optimal number of
bins. First task is approximately optimally pack large items.

 So, recall large items are items item i is large if ai≥γ . And the idea for this

approximately optimal packing is at a very high level is similar to the dynamic
programming algorithm for job scheduling. In the dynamic programming algorithm for
job scheduling, we use rounding to bound the number of different processing times of
the jobs. Here also we will do something similar, but importantly different also to bound
the number of different item sizes. Here the idea is what is called linear grouping.

 So, let k be a parameter whose value we will decide at the end of the algorithm
depending upon the requirement like gamma, gamma also its value we have not set yet
gamma and k this will be set at the end of the algorithm. So, that our algorithm runs in
polynomial time and it outputs a solution with size at most (1+ϵ)×opt+1 number of

bins. So, let k be on an integer parameter. So, by renaming the items we can assume that
their sizes are monotonically non-increasing . We can assume without loss of generality
by renaming the items that 1>a1≥a2≥a3≥…≥an.

 Now, what we do is we partition this items into buckets of size k. So, the first group is a1

up to ak ak+1 up to a2k, a2k+1 up to a3 k and so on up to an. This is the first bucket, this is

size k. this is the second bucket next k items, this is the third bucket next k items and so
on. Unless k divides in the last bucket has items less than k in general it has items less
than equal to k.

 Now, what we do we in the rounded down instance equivalent to the rounded down
instance what we do we throw away the top k items a1 to ak and replace this ak+1 to a2k

with the maximum ak+1, then the next item let us call it ak+1
’ which is same as ak+1, but the

next item size ak+2
’ that is also ak+1, a2k

’ is also ak+1. That means, in each group of k items

we are replacing every item with an item of maximum size in that group. So, this is the
after changing the weights these sizes these are the this is how the top group of k items

look like. So, in the next group a2k+1
’ is a2k+1.

 here in the next group the maximum size is a2k+1. So, we replace each item with another

item of size a2k+1. and so on. This instance I am calling I the original instance for which I

want to compute a packing and this instance I am calling I ’ the modified instance. What

is the relationship between I and I ’? So, here is an important lemma that opt (I) is less

than equal to opt (I ’)+k and greater than equal to opt (I ’). So, let us prove this lemma and

once we prove this lemma we will put suitable values of k and we will show how we can

solve this instance in I ’ you see the number of different sizes are not too much it is it will

be small we will see, but before that we prove this moreover any packing of I ’ can be
extended to obtain a packing of I using at most k additional bins.

 easy both are easy. So, first let us show that to show opt (I ’) is less than equal to opt (I).
What you do for that? Consider any packing of I into say l bins. Now, in this packing
you replace the i-th item with (k+i)-th item. in this packing we replace the i-th item of

the instance i with the (k+i)th item of I ’ and we claim that the resulting packing is valid

because valid means the sum of sizes of all the items assigned to 1 bin that is less than
equal to 1.

 The resulting packing is valid this and through the last items of last bag that is not

important the resulting packing is valid for I ’. packing is valid since now we are

replacing the i-th item of instance I whose size is ai with the (i+k)-th item of I ’ this is for

all i∈[n−k]. because this is ai is greater than equal to ai+k
’ because ai and ai+k to

consecutive bag and ai+k
’ is the maximum i size of the bag where it belongs and, but that

is less than equal to ai. So, we are replacing each item with a smaller item and the

resulting packing valid since it packs all items of I ’ and maybe something more. So, we

have that opt (I ’) is less than equal to opt (I).

 the other direction is also simple. So, we start with a packing of opt (I ’). Next to show

opt (I) is less than equal to opt (I ’)+k . We start by the way for this proof the. indices of

I ’ starts from ai+k here in the for i the indices start from 1 to n the items in i prime are

indexed with k+1 to n ok.

 We start with any packing of I ’ and the idea is if you look at ai
’ and ai ai

’ can only be

bigger for i∈{k+1 ,…,n}. So, we replace ai
’ with ai. for all i∈{k+1 ,…,n} ok. This is a

valid packing since ai
’ is greater than equal to ai for all i∈{k+1 ,…,n}. So, this is a valid

packing that is why, but in instance I has k more items which we can pack individually in
each we use k new bins and we can put a1 in the first new bin a2 in the second new bin

and ak in the k-th new bin.

 And hence we have proved that opt (I) is less than equal to opt (I ’)+k we can pack the k

extra items of i into k new bins. Hence, opt (I) is less than equal to opt (I ’)+k . Moreover

as you see that we can this part this direction we have started with a packing of I ’ and we
have simply seen that item as the original item and we have extended that packing to a
packing of I using at most k extra bins. Now we will say how we get an approximately
optimal solution for this problem ok. So, for that we set Now, we set up various values of
k and ϵ .

 The number of distinct pieces of items in I ’ is at most is ⌈ nk ⌉. see the number of groups

is ⌈ nk ⌉ and we are throwing away the first group. So, the number of groups for the for I ’

which is same as the number of distinct items is at most floor of ⌈ nk ⌉. which is
n
k
−1

because we are throwing away the first group which is at most
n
k

 ok. And now we set

since So, we set γ to be
ϵ
2

 recall in last lecture we have discussed that we can if we can

pack the large items into l bins and then we can if we can pack large items into l bins,

then we can pack all items in max{l , 11−γ S IZE (I)+1} bins.

 Now, we discussed that
1
1−γ

S IZE (I)+1 , S IZE (I)≤opt . So, this is
1
1−γ

opt (I)+1.

Now we want to set γ . So, that this is less than equal to (1+ϵ)×opt (I)+1.

 So, set γ . Now, you can check that if I set γ to be equal to
ϵ
2

, then this is enough because

1

1− ϵ
2

 is less than equal to 1+ϵ , this you can prove using elementary calculus ok good.

that is why we put if γ equal to
ϵ
2

. So, the number of large items in I we do not have any

small item n is small items. So, S IZE (I) is at least because we are setting γ to be
ϵ
2

 at

least
ϵ
2
×n because size of each item is at least

ϵ
2

.

 So, if we k to be floor of ϵ of S IZE (I), then we see that
n
k

 which is the number of

maximum number of distinct items in the after doing the linear grouping in the round

down instance I ’ is less than equal to
2n

ϵ×S IZE (I)
 because k is this. So, this is and

S IZE (I) is greater than equal to
ϵ
2
×n. So, this is less than equal to

4

ϵ 2
. So, here we are

using the fact that floor of any α is any real number α is greater than
α
2

 when α is greater

than equal to 1. So, there are so, we assume that ϵ×S IZE (I) is greater than equal to 1

since otherwise the number of items is at most

1
ϵ
ϵ
2

 because S IZE (I) is if it is less than 1

then sum of the sizes is at most
1
ϵ

 and each size of every item is at least
ϵ
2

.

 So, which is
2

ϵ 2
 and because we can have only this much items we can apply the

dynamic programming algorithm. to solve I ’ optimally. Hence, after linear grouping we
are left with constantly many constantly many pieces which we can solve optimally.
Hence what we have shown is this theorem that for any ϵ greater than 0 there is a
assuming ϵ is constant that packs items into at most (1+ϵ)×opt+1 bins. So, how do you

prove this? Proof.

 So, we set k to be less than ⌊ϵ×S IZE (I)⌋. Now, there are two cases if k is greater than

equal to 1, then we can solve this part after the round down instance optimally and then
we can use this result to get a packing with 1+opt (I) bins otherwise we have. So, this

case is done if k is otherwise k is less than equal to 1 and then we again find an optimal
packing after the round down instance and get this (1+ϵ)×opt+1 bins with this bins we

pack all the items ok. So, let us stop here. Thank you.

