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Lecture  22  :   An  APTAS  for  Bin  Packing

 Welcome, in the last lecture we have seen a polynomial time approximation scheme for 
scheduling jobs on multiple identical machines. So, today we will discuss another very 
important problem in computer science which is called bin packing and we have seen an 
approximation algorithm for bin packing. So, today's topic is bin packing. So, what is the 
input? Input are n items with sizes a1 , a2 ,…,an  where each ai is greater than 0 and less 

than 1 and the goal is to partition  these n items into minimum number of parts. So, that  
the sum of the sizes of the items in any part  is at most 1. So, you can think of these items  
are sizes and there are bins or which with capacity 1 and I want to use minimum number 
of  bins  to  pack  all  these  items.

 So, this problem is known to be NP complete even for checking whether it is possible to 
pack all the items into 2 bins theorem. computing if given set of items can be packed. into 
2 bins is NP complete. There is a very easy reduction from the partition problem and you 
can  take  it  as  a  homework.

 reduction  from  the  partition  problem,  details  are  homework.  So,  what  is  partition 
problem? Let me tell you partition problem we are given n items again with their sizes.  
say b1 ,…,bn just want all bi's greater than 0 for all i∈[n]. We do not need all bi's to be 

strictly less than 1, they can be more than 1 also and the goal is to check  if there exists a  
subset I of items such that. summation bi the sum of the sizes of the items in set I is same 

as  the  sum  of  the  sizes  of  the  items  in  set  [n]∖ I .

 So, this is the partition problem you start with a partition problem any arbitrary instance 
of it and reduce an equivalent instance of knapsack thereby showing that the knapsack 
problem even in  the  special  case  whether  2  bins  suffice  or  not  is  NP complete.  So, 
immediate corollary from this theorem is and partition problem is known to be NP  An 

immediate corollary of this theorem is that there does not exist any better than 
3
2

 factor 

approximation algorithm for bin packing theorem. There does not exist  any  ρ factor 



approximation algorithm for bin packing. for any ρ< 3
2

. Because we have seen this sort of 

proof  again  in  this  course  that  if  there  exist  a  better  than  
3
2

 factor  approximation 

algorithm for bin packing, then we can use this algorithm to  solve this instance, we can 
use that algorithm to compute if a given instance of bin packing can be can if the if the if 
a  given  set  of  items  in  a  bin  packing  instance  can  be  packed  in  2  bins  or  not.

 but  in  bin  packing we will  show something remarkable  which  is  called  asymptotic 
PTAS. So, let us first define it what is APTAS or asymptotic asymptotic polynomial time 
approximation scheme APTAS in short. What is it? An APTAS  is a family of algorithms 
ϵ  parameterized by ϵ  for  every ϵ  greater than 0 like PTAS or FPTAS and a constant c 
such that the algorithm A ϵ returns and returns are (1+ϵ )×opt+c. approximate solution or 

returns a solution of value at most (1+ϵ )×opt+c this is for minimization problems. So, 

what  we  will  see  that  for  knapsack  there  exist  an  EPTAS.

 So, this is the theorem that we will prove now and this runs in time  in time the running  

time  is  like  PTAS  nO( f (ϵ )).  So,  for  every  constant  epsilon  this  is  a  polynomial  time 
algorithm ok. So, for every  epsilon greater than 0 there exists an algorithm for knapsack 

for bin packing. which packs the items into at most  (1+ϵ )×opt+1 bins in time nO( f (ϵ )). 

So, we will see what is the exact running  And the idea is we will use the our algorithm 
the PTAS for the job scheduling and the high level idea is also same that we will divide  
the  items  into  small  item  and  large  item  and  focus  only  on  large  items.

 So, for a parameter  γ  whose value we will decide at the end of the algorithm. We call 
item i  large  i∈[n] if  ai≥γ .  else  we call  ai we  call  the  item i  small.  So,  here  is  an 

important  lemma  that  any  packing  of  large  items  into  l  bins  can  be  extended.  into 

extended to packing of all items into  max{l , 11−γ S IZE ( I )} bins where SIZE(I) is the 

sum  of  the  sizes  of  all  the  items  in  the  instance  ok.

 proof. So, we start with any packing of large items into l bins and then we try to greedily 
pack all the items all the remaining items which are small into the into the bins. What do 
you mean by greedily pack? We pick  small item in every say item j in every iteration of 
our greedy algorithm. If there is a bin  with free space a j, then we put item j on that bin. 

Otherwise   we  put  j  into  a  new  bin.  So,  that  is  the  case.

 So, two things can happen, if we start this our greedy algorithm from the packing of 
large items into l bins and every time I pick a small item, if it is the case that we do not 
need to open a new bin and pack all small items, then in that case we are able to pack all  



items into l bins. The other case when  at least one new bin is opened, there we will show 

that the number of bins used is at most 
1
1−γ

×S IZE ( I ). So, if the greedy algorithm does 

not open any new bin, then we use we pack all items into l bins. On the other hand, if a  
new bin is opened then j be or then let k be the iteration when the last  new bin is opened.  
Let  j  be  the  small  job  picked  in  iteration  k.

 then its size is a j the size of job j which is less than gamma and that item is not fit in is  

not fit in any of the existing bins. That means, that all the existing bins must be at least  
1−γ  full actually more than  1−γ  full of the bins, none of the existing bins have free 
space at least γ . Then we observe that none of the existing bins  has free space at least γ  
ok.  Let  alg  be  the  number  of  bins  used  by  the  algorithm.

 Then at least alg−1 bins are more than 1−γ  full, then look at alg−1 each of these bins 
except the last bin opened each of the existing bins they are kept the size some of the  
sizes of the items in this bins each of this bin is at least 1−γ  ok. This should be less than 
equal to SIZE(I). because SIZE(I) is the sum of the sizes of all the items. From here we 

get  alg−1 is  less  than  equal  to  
1
1−γ

×S IZE ( I ),  hence  alg  is  less  than  equal  to 

1
1−γ

×S IZE ( I )+1 ok.  And before we have shown that  in this  case alg is  at  most  l.

 So, we have alg is less than equal to max{l , 11−γ S IZE ( I )}+1. Now, see that SIZE(I) is 

a  lower  bound  on  opt  minimum number  of  bins.  So,  this  is  also  less  than  equal  to 
1
1−γ

×opt ( I )+1. So, we will use this crucially. So, there also we have seen that if we are 

able to pack the large items in optimal or approximately optimal number of bins, then by 
applying this greedy algorithm from the from the packing of large items we will get an 
approximately  optimal  solution.

 if we are able to pack large items optimally. or approximately optimally, then our greedy 
algorithm  outputs an approximately optimal packing. So, we will see how this idea is  
implemented in the next lecture. Thank you.


