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Lecture 21 :  PTAS for Minimizing Makespan for Scheduling Jobs on Parallel Identical 
Machines  contd.

 So, in the last class we have we have started doing the PTAS for scheduling jobs into 
multiple identical machines to minimize the mix span and we have come to a point of 
designing an algorithm called Bk. which takes a target make span T and the goal is to find 
out whether the opt is less than T or if opt is greater than equal to T, then it outputs a  

schedule with  processing time at most (1+ 1k )×T  ok. And then we have discussed that it 

is enough to schedule only long jobs optimally and now in this lecture we will see nice 
dynamic programming algorithm for doing that job ok. So, this is PTAS for  scheduling 
jobs on multiple identical machines continue. And we were discussing the algorithm BK 
which  either  outputs  a  schedule  with  make  span.

 at most  (1+ 1k )×T  sorry, where T is the target make span given as input to  Bk or it 

reports that there is no schedule with make span at most T ok. And for that we have 

defined long jobs whose processing time is greater than equal to 
T
k

  and short jobs whose 

Poisson time is less than 
T
k

 and then we have observed that it is enough to schedule the 

long jobs. with make span at most (1+ 1k )×T  and then we can run the least scheduling 

algorithm from that schedule to schedule the short jobs obtaining an overall schedule 

whose make span is at most (1+ 1k )×T . And towards that what we have done we round 

the processing time of long jobs to integral multiple to the nearest integral multiple of 
T

k2
 

sorry  nearest  multiple  of  not  be  integral  nearest  integral  multiple  that  means, 



pi
’∈{0 , T

k ,
2T

k2
,…,T } . So, these are the possibilities and then we observe that it is enough 

to compute the optimal schedule for this rounded down instance and that is that schedule 
the make span of that schedule with respect to the original processing times is at most 

(1+ 1k )×T .

 So, it is enough. to schedule the round down instance round down jobs optimally ok. The 

first observation is that number of distinct ah  processing times could be at most k2. So, 

observe that the number of distinct  processing times can be at most k2. The 0 also cannot 

be there actually the initial first terms for which this value is less than 
T
k

 cannot be there 

because  we  are  considering  only  long  jobs.

 strictly more than 
T
k

 cannot be there. So, we can ignore this first definitely the first term 

and hence the number of distinct processing times would be at most k2 it will be strictly 

less  than  k2 because  we  are  considering  only  long  jobs  whose  processing  times  are 

greater than equal to 
T
k

 this is very important. Now, the number of jobs is n. So, and there 

are few possibilities think of k as constant then there are constantly many possibilities for 
processing times. Hence, the number of distinct instances  with at most k jobs at most n 

jobs  is  at  most  nk
2

.

 So,  think  of  like  this  how  many  jobs  are  there  with  processing  time  
T

k2
 for  each 

processing time you note down how many jobs are there from that perspective if you 

count then this is at most nk
2

 which is a polynomial in n. if k is a constant which is indeed 

the case recall we will at the end we will substitute k to be something like  
1
ϵ

. So, the 

number of instances could be at most n
1

ϵ 2 if we are we will substitute k to be 
1
ϵ

. So, we 

can  encode.  So,   we  can  encode  each  instance  ah  by  the  number  of  jobs  for  each 
processing  time.

 Let  ni be the number of jobs with processing time  
i T

k2
. And let  opt (n1 ,… ,nk2) be the 

minimum number of  machines needed to process these jobs with make span at most T. 
So,  now  look  at  from  a  particular  machines  point  of  view,  how  many  possible 
configurations could be there for a particular machine. So, what is the configuration or 



given a schedule  the or if si be the number of jobs with processing time 
i T

k2
 scheduled to 

a machine, then the tuple (s1 , s2 ,…, sk2) is called the configuration of that machine. So, 

that is called configuration of that machine and now we ask if the make span is T and all 

are long jobs that means, they are they are processing time is greater than equal to 
T
k

 each 

si must be less than equal to k+1. must be less than equal to k since all the jobs are long 

for  make  span  to  be  at  most  we  must  have  si∈{0 ,1 ,2 ,…,k }.

 This is for all i in this set. These are the set of pricing times n1 to  nk2 ok. We must have 

si in this that means, si can have at most k+1 different values that si can take. Hence, the 

number of  different configurations is at most. it is a tuple of  k2 coordinates and each 

coordinate  can  take  at  most  k+1 values  is  at  most  (k+1)k
2

 ok.

 Now, we run to the we come to the dynamic programming recurrence. So, opt is n1 to 

nk2 this is we guess the configuration of any 1 machine say machine 1 it is 1+min(s1 ,…, sk2)∈C
 

denote  the  set  of  all  configurations  that  a  machine  can  take  minimum  of 
opt (n1 – s1 ,… ,nk2−sk2) ok. updating a table entry takes big O of cardinality C  can take at  

most the number of configurations because we have to go over all configurations. It is a 
dynamic  programming  algorithm.  So,  this  table  entries  are  already  filled.

 So, this is  O((k+1)k
2

) and what is the number of cells in the table number of table 

entries. is less than equal to the number of instances with at most n jobs which is  nk
2

. 

Hence, the running time of the dynamic programming algorithm is O(nk
2

) cells and each 

cell  it  takes  (k+1)k
2

 time to update each cell  ok.  And now, this  is  the algorithm we 

compute the optimal schedule. Now, if we  we put k to be equal to 
1
ϵ

 to obtain a schedule 

with make span at most (1+ϵ )×T  using which we can actually get  (1+ϵ )×opt  in time.

O(n
1

ϵ 2 (1+ 1
ϵ
)
1

ϵ 2 ) in this much time. Notice that we have what we have showed how does 

the  proof  of  correctness  of  algorithm  Bk follow?  We  have  shown  that  under  the 

assumption that there is an optimal schedule for long jobs with make span less than equal 
to  T  or  at  most  T.  this  algorithm  Bkoutputs  a  schedule  of  with  make  span  at  most 

(1+ 1k )×T . Now, nothing is shown if the optimal make span of this long jobs is more 

than T. So, 2 things can happen algorithm does this sort of things and it gets a schedule.



 So, it can check what is the make span. So, if it got hold of a schedule which make span 

is at most (1+ 1k )×T  in it outputs which is which it can do. Otherwise if after running the 

algorithm  the make span of the schedule that the algorithm obtains is strictly more than 

(1+ 1k )×T  that implies that the optimal make span for this long jobs is greater than T 

because we have shown that if the optimal make span for long jobs is less than equal to T 

then the make span of the schedule output by this algorithm must be (1+ 1k )×T  ok. So, 

let us this is the PTAS a next natural question is can we have an FPTAS. can we have an 
algorithm which outputs 1+ϵ  factor approximate solution with time polynomial in n and 
1
ϵ

 this  is  a  PTAS  not  FPTAS.

 So, can we have an FPTAS. The answer is no because this problem is what is called 
strongly  NP complete.  So,  it  is  known that  this  scheduling  problem.  is  strongly  NP 
complete. Now, what does strongly NP completeness mean? It means that even if all  
input numbers are polynomially bounded by the size of the input, then also the problem 
remains  NP  complete.  Π is  called  strongly  NP  complete.

 If there exists a polynomial  q such that the such that Πremains NP complete even if all 
input  numbers  are  at  most  q  times  n.  where  n  is  the  size  of  the  input.  Now,  these  
problems are called strongly NP complete and for any problem which is strongly NP 
complete we do not get could not get a FPTAS under very mild assumption. So, let us let 
us  see  the  proof  for  this  job  scheduling  problem.

 So, suppose not. So, it is a proof by contradiction what is known is that this scheduling 
problem is strongly NP complete that means, there exist a polynomial Q such that even if  
all processing times are less than q(n) then also it is NP complete. So, from here it means 

NP complete even when  Π is less than equal to  q(n) for all i in n ok. So, this is the 

processing times of this and what we can show is that if there exist an FPTAS we can use 
that algorithm to solve this problem to have a polynomial time algorithm for scheduling 
problem under this assumption that the processing times are less than equal to q(n). So, 

suppose there  exist  an algorithm for  job scheduling which outputs  1+ 1
k

 approximate 

solution  in  time.

 poly n and k. Then what we do we put first you see that opt is less than equal to n times 
q(n), opt is definitely less than equal to the sum of processing times of all jobs. So, is  

less than equal to q(n). What we do we put k to be  ceiling of twice n q(n). Then the alg, 



we know alg is must be less than equal to (1+ 1k )×opt , opt is less than equal to n q(n). 

So, (1+ 1
k
)×nq(n)  and k is this because it is a ceiling what we can do this is less than 

equal  to  1+ 1
2nq(n)

 .

 So, let us make the first term opt keep it opt plus the second term is at most 
nq(n)
k

. So, 

for the first term let us keep it opt+
nq(n)
2nq(n)

. So, this is less than equal to opt+ 1
2

, but we 

have assumed that all processing times are integral so that means, this is less than equal 
to  opt.  of  course,  l  it  is  a  schedule.

 So, ALG must be greater than equal to opt. So, what we have obtained is opt equal to 
ALG. So, the algorithm outputs a schedule in which is optimal schedule and the runtime 
is poly n and k and k is nq(n). which is because q n is a polynomial is poly n. So, in if  

we  have  a  FPTAS for  this  job  scheduling  algorithm and  because  it  is  strongly  NP 
complete, we have shown that we can use that FPTAS to get an optimal schedule when 
the processing times are polynomially bounded in n in time polynomial which implies 
that  P  equal  to  NP.

 So,  under P not  equal  to NP assumption there is  no FPTAS for the job scheduling 
algorithm on multiple parallel machines to minimize the mix span ok. So, let us stop here. 
Thank you.


