
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 04

Lecture 20

Lecture 20 : PTAS for Minimizing Makespan for Scheduling Jobs on Parallel Identical
Machines

 Welcome in the last class we have seen a PTAS for minimizing make span of jobs into
identical multiple machines, when the number of machines is constant. Now, in this class
we will remove that requirement that the number of machines is constant. So, it is again
we will see a PTAS for the general case. So, today's topic is PTAS a polynomial time
approximation scheme for job scheduling on multiple parallel machines. So, if you recall
let us briefly recall the last algorithm. So, we have a lower bound on opt which is greater

than equal to
1
m
∑ pi and we divided the jobs with among long jobs and short jobs .

 So, long jobs are those whose processing time s greater than equal to
1

k ×m∑ pi where

k is a parameter of the algorithm Ak which will output (1+ 1k)×opt+1 approximate

solution ok. So, these are long jobs and short jobs are the other jobs. and then we use this
fact that if I have a schedule for long jobs which is opt then we run the list scheduling
algorithm for short jobs from the optimal schedule of long jobs. So, if we have a
schedule for long jobs with make span say M.

 then running list scheduling let us call this schedule say S running list scheduling for
small jobs. from S gives a schedule with makespan at most. So, in one case we have if we
do not need. So, in one case this could be at most m, because if after scheduling all the
short jobs if still the long there is a long job which ends last then that makespan will
remain m. or if there is a short job which finishes at last, then because short job they are

processing time is less than
opt
k

, because opt is greater than equal to k.

 average load of the machine. So, because processing time of short jobs is less than
opt
k

in this case we have a schedule of make span at most (1+ 1k)×opt . and then we

computed an optimal schedule for long jobs, hence m becomes opt and then with this we

got a 1+
1
k

 factor approximation algorithm. And we use the brute force technique which

runs in polynomial time assuming k is constant only if the number of machines m is
constant. The idea to generalize this algorithm to a compute a schedule which is at most

(1+ 1k)×opt it not be optimal and that will be enough.

 So, that we will do now. So, the idea is again divide the jobs into 2 sets long jobs and
short jobs and we first observe that the following algorithm is enough is enough. What is
this algorithm? It given T a target the algorithm Bk outputs a schedule with make span at

most (1+ 1k)×T if there is a schedule or the algorithm Bk outputs a schedule of make

span at most (1+ 1k)×T or it reports that there is no schedule with make span at most T.

So, let us let us first see how if I have an algorithm for Bk I can find a (1+ 1k)×opt factor

approximation algorithm for long jobs. So, we know that T ≠opt long we are focusing
only on long jobs because of this result ok.

 So, opt long is in between these 2 quantities the first one is it is less than the max of we

have 2 lower bounds one is average load
1
m
∑i=1

n
pi and maximum processing time of

any job. So, both are lower bounds. So, this will be greater than equal to. so opt will be
greater than equal to this because both are lower bound and we have a because of least
scheduling algorithm we have a upper bound on summation average load plus the

minimum load of any or the maximum processing time of any job max i=1
n pi ok. So, this

one we call it upper bound U and this one we have called it lower bound L.

 Now, we start we run Bk with T=⌊ L+U2 ⌋. So, our algorithm is like doing binary search

every iteration we will ensure that whatever be our u we always have a schedule with

makespan at most (1+ 1
k
)×opt . So, this is the lower bound and this is the upper bound,

this is the upper bound U, this is the lower bound L. Of course, this invariant holds at the
beginning of the algorithm because of least scheduling algorithm. Least scheduling
algorithm outputs a schedule with make span at most U.

 So, if so, we run Bk with this particular T, Bk can output two things. Bk outputs a

schedule with make span at most (1+ 1
k
)×T then we update U to T. And again you notice

that after this update the invariant remains true that we whatever be the value of U we

always have a schedule with make span at most (1+ 1
k
)×U . Otherwise if Bk outputs that

there is no schedule with makespan at most T, then we update L to (T+1) ok. So,

basically we are maintaining two invariants, we maintain the following 2 invariants after
each update.

 the first invariant is opt is always in between L and U and second is we can compute the

schedule with makespan at most (1+ 1
k
)×U in time needed to execute Bk ok. Note that

this are this these two invariants hold at the beginning of the iteration and also we
observe that in each iteration in each iteration U−L strictly decreases. Moreover, the
number of iterations is O(log (U−L)) ok. And we also want to maintain the invariant

then U at that U and L are integers for that we write ceiling here, because this ceiling is
also a bound ok. So, this shows that having an algorithm Bk which outputs a schedule for

long jobs which is which takes T as the target make span as input and either reports that
there is no schedule with make span at most T or it outputs a schedule with make span at

most (1+ 1
k
)×T that is enough.

 to have M to schedule the long jobs with time at most (1+ 1
k
)×opt . Because, after this

many iterations this after which we have L=U when the algorithm terminates because
whenL=U that means, it should be equal to opt because opt is sandwiched between L
and U and we have an algorithm this Bk outputs a schedule with make span at most

(1+ 1
k
)×U . So, now, we will describe the algorithm Bk and the idea is again the same

that we will partition the jobs into long jobs and short jobs. So, now, we are running we
are doing the algorithm Bk. So, here also we define long jobs to be those jobs with

processing time pl is greater than equal to (1+ 1
k
)×T , here we are given a target make

span T and short jobs pl<
1
k
×T .

 Again let us show that we can it is enough to schedule only long jobs . So, further what
we do we schedule we or let me write enough to schedule long jobs with make span at

most (1+ 1
k
)×T . Why? Suppose I have a schedule with for long jobs under this definition

of long and short which whose make span is at most this, because if we run again least
scheduling algorithm for short jobs from a schedule for long jobs whose makespan is at

most (1+ 1
k
)×T , then the make span of the schedule obtained for all jobs is at most. again

think of two cases we start with a schedule for long jobs and we process the short jobs
using the least scheduling algorithm. Now, if there is a long job which finishes last then

the make span remains same in this case the make span will remain to be (1+ 1
k
)×T .

 In the other case if the there is a short job which finishes last then by the analysis of the
least scheduling algorithm we know that the makespan when look at the time when the
last short job which finished the last started at that time at that time all the machines were
busy processing the other jobs and hence the makespan is at most opt plus the processing

time of the last job which is at most
T
k

. So, this is the max ok. Now, because T is greater

than equal to opt this is (1+ 1
k
)×T . So, again our reduced goal is to schedule this long

jobs whose processing time is L≥T
k

. but may not be optimally it is enough to have

schedule them with make span at most (1+ 1
k
)×T and the trick is again rounding down

the numbers.

 So, we round down the processing time of long jobs to nearest multiple of
T

k2
. ok. So, we

schedule only long jobs we are ignoring short jobs because of this. So, we round down

this. Now, here let I ’ be the resulting instance what we will do? We will compute the

optimal solution for I ’ and we can see that opt I and opt I ’ cannot vary much.

 For that you see we observe that any machine can process at most k long jobs, if opt I is

less than equal to T ok. If opt I is less So, if there is a schedule with optimal makespan is

at most T because the max the processing time of each job is greater than equal to
T
k

.

Now, we can see opt I of course, it is greater than equal to opt I ’ because the processing

time of the jobs has reduced. when I say I here only long jobs are there, but how much it

can. So, if you look at the of I ’ the same schedule how much more time it can take each

rounding may have shorten the processing time of a job by at most k2 and in each
machine there can be at most k jobs.

 So, this is
k×T
k2

. So, this is opt I ’ which is also less than equal to T if we have this

(1+ 1
k
)×T ok. So, in the next class we will see a beautiful dynamic programming

algorithm for computing the optimal schedule for this long jobs ok. So, let us stop here.
Thank you.

