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 Welcome in the last class we have seen a PTAS for minimizing make span of jobs into  
identical multiple machines, when the number of machines is constant. Now, in this class 
we will remove that requirement that the number of machines is constant. So, it is again 
we will see a PTAS for the general case. So, today's topic is PTAS  a polynomial time 
approximation scheme for job scheduling on multiple parallel machines. So, if you recall 
let us briefly recall the last algorithm. So, we have a lower bound on opt which is greater  

than equal to  
1
m
∑ pi and we divided the jobs with among long jobs and short jobs .

 So, long jobs are those whose processing time  s greater than equal to 
1

k ×m∑ pi where 

k is  a  parameter  of  the algorithm  Ak which will  output  (1+ 1k )×opt+1 approximate 

solution ok. So, these are long jobs and short jobs are the other jobs. and then we use this  
fact that if I have a schedule for long jobs which is opt then we run the list scheduling 
algorithm for  short  jobs  from the  optimal  schedule  of  long  jobs.  So,  if   we  have  a 
schedule  for  long  jobs  with  make  span  say  M.

 then running list scheduling let us call this schedule say S running list scheduling for  
small jobs. from S gives a schedule with makespan at most. So, in one case we have if we 
do not need. So, in one case this could be at most m, because if after scheduling all the 
short jobs if still the long there is a long job which ends last then that makespan will  
remain m. or if there is a short job which finishes at last, then because short job they are 

processing  time  is  less  than  
opt
k

,  because  opt  is  greater  than  equal  to  k.

 average load of the machine. So, because processing time of short jobs is less than 
opt
k

 



in  this  case  we  have  a  schedule  of  make  span  at  most  (1+ 1k )×opt .  and  then  we 

computed an optimal schedule for long jobs, hence m becomes opt and then with this we 

got a 1+
1
k

 factor approximation algorithm. And we use the brute force technique which 

runs in polynomial time assuming k is constant only if the number of machines m is  
constant. The idea to generalize this algorithm to a  compute a schedule which is at most  

(1+ 1k )×opt  it  not  be  optimal  and  that  will  be  enough.

 So, that we will do now. So, the idea is again divide the jobs into 2 sets long jobs and  
short jobs and we first observe that  the following algorithm is enough is enough. What is 
this algorithm? It given T a target  the algorithm Bk outputs a schedule with make span at 

most  (1+ 1k )×T  if there is a schedule or  the algorithm Bk outputs a schedule of make 

span at most (1+ 1k )×T  or it reports that there is no schedule with make span at most T. 

So, let us let us first see how if I have an algorithm for Bk I can find a (1+ 1k )×opt  factor 

approximation algorithm for long jobs. So, we know that  T ≠opt   long we are focusing 
only  on  long  jobs  because  of  this  result  ok.

 So, opt long is in between these 2 quantities the first one is it is less than the max of we 

have 2 lower bounds one is average load  
1
m
∑i=1

n
pi and maximum processing time of 

any job. So, both are lower bounds. So, this will be greater than equal to. so opt will be 
greater than equal to this because both are lower bound and we have a because of least 
scheduling  algorithm  we  have  a  upper  bound  on  summation  average  load  plus  the 

minimum load of any or the maximum processing time of any job max i=1
n pi ok. So, this 

one  we  call  it  upper  bound  U  and  this  one  we  have  called  it  lower  bound  L.

 Now, we start we run Bk with T=⌊ L+U2 ⌋. So, our algorithm is like doing binary search 

every iteration we will ensure that whatever be our u we always have a schedule with 

makespan at most (1+ 1
k
)×opt . So, this is the lower bound and this is the upper bound, 

this is the upper bound U, this is the lower bound L. Of course, this invariant holds at the 
beginning  of  the  algorithm  because  of  least  scheduling  algorithm.  Least  scheduling 
algorithm  outputs  a  schedule  with  make  span  at  most  U.



 So,  if  so,  we run  Bk with this  particular  T,  Bk can output  two things.  Bk outputs  a 

schedule with make span at most (1+ 1
k
)×T  then we update U to T. And again you notice 

that after this update the invariant remains true that we whatever be the value of U we 

always have a schedule with make span at most (1+ 1
k
)×U . Otherwise  if Bk outputs that 

there  is  no schedule  with  makespan at  most  T,  then we update  L to  (T+1) ok.  So, 

basically we are maintaining two invariants, we  maintain the following 2 invariants after 
each  update.

 the first invariant is opt is always in between L and U and second is we can compute the 

schedule with makespan at most (1+ 1
k
)×U  in time needed to execute Bk ok. Note that 

this  are  this  these  two invariants  hold  at  the  beginning of  the  iteration  and also  we 
observe that in each iteration in each iteration  U−L strictly decreases. Moreover, the 
number of iterations is  O(log (U−L)) ok. And we also want to maintain the invariant 

then U at that U and L are integers for that we write ceiling here, because this ceiling is  
also a bound ok. So, this shows that having an algorithm Bk which outputs a schedule for 

long jobs which is which takes T as the target make span as input and either reports that 
there is no schedule with make span at most T or it outputs a schedule with make span at  

most  (1+ 1
k
)×T  that  is  enough.

 to have M to schedule the long jobs with time at most (1+ 1
k
)×opt . Because, after this 

many iterations this after which we have  L=U  when the algorithm terminates because 
whenL=U  that means, it should be equal to opt because opt is sandwiched between L 
and U and we have an algorithm this  Bk outputs a schedule with make span at most 

(1+ 1
k
)×U . So, now, we will describe the algorithm Bk and the idea is again the same 

that we will partition the jobs into long jobs and short jobs. So, now, we are running we 
are doing the algorithm  Bk.  So,  here also we define long jobs to be those jobs with 

processing time pl is greater than equal to  (1+ 1
k
)×T , here we are given a target make 

span  T  and  short  jobs   pl<
1
k
×T .

 Again let us show that we can it is enough to schedule only long jobs . So, further what 
we do we schedule we  or let me write enough to schedule long jobs with make span  at 

most (1+ 1
k
)×T . Why? Suppose I have a schedule with for long jobs under this definition 



of long and short which whose make span is at most this, because if we run again least  
scheduling algorithm  for short jobs from a schedule for long jobs whose makespan  is at 

most (1+ 1
k
)×T , then the make span of the schedule obtained for all jobs is at most. again 

think of two cases we start with a schedule for long jobs and we process the short jobs 
using the least scheduling algorithm. Now, if there is a long job which finishes last then  

the make span remains same in this case the make span will remain to be  (1+ 1
k
)×T .

 In the other case if the there is a short job which finishes last then by the analysis of the  
least scheduling algorithm we know that the makespan when look at the time when the 
last short job which finished the last started at that time at that time all the machines were  
busy processing the other jobs and hence the makespan is at most opt plus the processing 

time of the last job which is at most 
T
k

. So, this is the max ok. Now, because T is greater 

than equal to opt this is  (1+ 1
k
)×T . So, again our reduced goal is to schedule this long 

jobs whose processing time is  L≥T
k

.  but may not be optimally it  is  enough to have 

schedule them with make span at most (1+ 1
k
)×T  and the trick is again rounding down 

the  numbers.

 So, we round down the processing time of long jobs to nearest multiple of 
T

k2
. ok. So, we 

schedule only long jobs we are ignoring short jobs because of this. So, we round down 

this. Now, here let  I ’ be the resulting instance  what we will do? We will compute the 

optimal  solution  for  I ’ and  we  can  see  that  opt I and  opt I ’ cannot  vary  much.

 For that you see we observe that any machine  can process at most k long jobs, if opt I is 

less than equal to T ok. If opt I is less  So, if there is a schedule with optimal makespan is 

at most T because the max the processing time of each job is greater than equal to  
T
k

. 

Now, we can see opt I of course, it is greater than equal to opt I ’ because the processing 

time of the jobs has reduced. when I say I here only long jobs are there, but how much it 

can. So, if you look at the  of I ’ the same schedule how much more time it can take each 

rounding may have shorten the  processing time of  a  job by at  most  k2 and in  each 
machine  there  can  be  at  most  k  jobs.



 So, this is  
k×T
k2

.  So, this is  opt I ’ which is also less than equal to T if we have this 

(1+ 1
k
)×T  ok.  So,  in  the  next  class  we  will  see  a  beautiful  dynamic  programming 

algorithm for computing the optimal schedule for this long jobs ok. So, let us stop here. 
Thank you.


