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Welcome. So, in the last lecture we have seen what is an approximation algorithm and
what is approximation ratio and various ways to tackle NP complete problems. So, from
today  onwards  we  will  delve  into  designing  approximation  algorithms  for  various
problems.  So,  let  us  start.  we will  look at  the set  cover  problem to demonstrate  our
techniques  for  designing  approximation  algorithms.

 So, what is set cover problem? We will use this problem many times in this course to
demonstrate how a particular technique for designing approximation algorithm is applied.
So, what is this problem? So, the input  is a universe U with n elements a collection

 of subsets of U with costs . So, each set has a cost and these
costs  are  greater  than  equal  to  0.  ok  and that  is  it  and the  goal  output  set  cover  of
minimum  cost.  minimum  total  cost.

 What  is  a  set  cover?  So,  a  collection  of  sets   everyone  belongs  to

 is called a set cover for U. union of  equal to this universal set
U ok. And the cost of this  set  cover  is  the sum of the costs  of these sets  which is

 ok. So, in this problem we are given a universe and a collection of sets
each with some cost and we need to compute a set cover of minimum cost. So, it is a well
known fact and you can also prove it yourself take it as a homework that the set cover
problem  is  NP  complete.

 Now when I  say the set  cover problem is  NP complete  recall  the NP framework is
defined only for decision version of the problem. On the other hand the set cover problem
as described here it is an optimization problem. So, when I say that the set cover problem
is NP complete that more formal or correct statement would be the decision version of



this set cover problem is NP complete. What is the decision version of this problem? the
input is as usual the universe U and the collection of sets and also a target cost K and the
question is does there exist a set cover of total cost at most K and then by defining this
way it will be a yes or no answer and it will be a decision version of the problem that
version needs to be can be shown that it is NP complete. Here also sets have weights if all
sets have same weight say same cost equal to 1, then this set cover problem is called
unweighted  set  cover  problem  and  even  that  version  is  also  NP  complete.

 Now, we will see an approximation algorithm for this weighted set cover problem let us

change this costs to weights.   here   ok. Next we design a
polynomial time approximation algorithm for set cover problem and for that we use what
is called a linear program. Now what is a linear program? Let me give a brief very high
level idea,  but if you do not know linear programming please understand learn linear
programming before go ahead with this course. So, and there are various textbooks for
example, in the appendix section of the approximation algorithm book of Williams and
Shmoys and has a good enough exposition for linear programming which is enough for
our  purpose.

So, what is a linear  program? Let me give a very high level  idea.  We have a set of
decision variables or simply variables which can take. real values ok. Then there is a we
will see an example shortly there is a system of  linear equal linear inequalities two kinds
of linear inequalities are allowed less than equal to or greater than equal to strictly less
than or strictly greater than is not allowed for linear programming. Linear inequalities
that the decision variables must satisfy and then and finally, there is a linear objective
function which we want to  maximize or minimize ok. So, what we will do we first and
there is another programming which is called integer linear programming. And, here it is
same as linear programming and on top of this. So, we can specify some variable to take
only  integral values integer values ok. And very important fact linear program can be
solved  in  polynomial-time.

 However, solving an integer linear program  ILP for short is NP complete. So, in most
cases we will see that our problems can be formulated as an integer linear program and
then what we will do we will relax something called relaxation of integer linear program
to  linear  programs  and  crucially  use  the  fact  that  linear  programs  can  be  solved  in
polynomial time to design our polynomial time approximation algorithms. So, for that let
us see how the framework is used using set cover. So, formulating set cover as an integer
linear program ILP. So, in set cover problem what is the goal? The goal is to pick sets.

 So, we have sets   and we will pick sets so that their union is U. So, we

have  variables say   where   encodes  the fact that   is picked in the



solution and   indicates  that   is not picked in the solution. So, here we will

define each  is takes only integral values 0 or 1 and this sort of constraint is allowed
only in integer linear programs. In linear program this sort of constraints are not allowed
this for all   ok. So, what is our goal? Our goal is to minimize the
total  weight  of  the  sets  covered.

 So, minimize the goal in terms of these variables the goal is to minimize the sum of the

weights of the sets picked. that is  . ok, and what is the constraint thus the sets
that we pick that must form a set cover their union must be u. Now, how do we write that
constraint as a linear constraint using greater than equal to or less than equal to. So, that
we can write as that the same constraint is equivalent to for every element in the universe
all  the  sets  that  contain  that  element  at  least  one  such  set  should  be  picked.

 So, let u be these are the elements e1 , e2 ,…,en . I need to look at the sets where e i
belongs. So,  j∈[m ]  such that  e i∈S j  ok. Those sets at least one of them must be
picked that means, at least one of those x j 's must be set to 1 which is equivalent to
writing  this  is  greater  than  equal  to  1.  So,  this  is  the  constraint.

 So,  what  is  the  integer  linear  program?  ILP  formulation  of  set  cover.  minimize

∑j=1

m
w j x j  subject  to  the  constraints.  What  are  the  constraints?  For  all i∈[n]

∑j∈[m ]: ei∈S j
x j≥1  ok.  And  what  else  each  variable  j∈[m ] , x j∈{0 ,1} .

 So,  this  is  the ILP integer  linear  programming formulation of set  cover that  means,
whatever the minimum value here is that is the minimum value of the set cover. This is
not an LP because this is the last constraints this is not LP constraint. ok, but this ILP
cannot be solved in polynomial time. So, what we do we relax the ILP relax the ILP to an
LP.  what  is  the  relaxation?  The  constraints  where  the  constraints  where  which  are
allowed in LP that means,  this  the optimization and this  constraints  will  stay as it  is

minimize  ∑j=1

m
w j x j  subject  to i∈[n]  ∑j∈[m ]: ei∈S j

x j≥1 and  we  replace  this

constraint  j∈[m ] , x j∈{0 ,1}  to  the  best  possible  linear  constraint  which  is  for  all
j∈[m ] ,0≤x j≤1 .

 So, this is the relaxed LP. Now, you can see or this is also you can take it as a homework
that this part that we can get rid of we can delete.  x j≤1  for all  j∈[m ] . These
constraints  we can get  rid of without  affecting  the value of  optimal  solution without
affecting  LP  opt.  which  is  the  value  of  an  optimal  LP  solution  ok.



 Also you see that every feasible solution of ILP is a feasible solution of LP. So,  observe
that every feasible solution of LP feasible solution means which satisfies this  is every
feasible solution of ILP sorry that means, which satisfies this constraints is also a feasible
solution of LP is also a feasible solution of ILP. Hence,  ILP−opt≥LP−opt  ok and
ILP−opt=opt  because we are minimizing in LP we have a larger set to minimize.

Now, let us see the first approximation algorithm we solve the relaxed LP let (x j
∗)j∈[m]

be any optimal  solution ok. This we can do in polynomial time. Now, our goal is to

output a set cover. So, define say Z to be you know those sets S j  such that  x j
∗≥1
f

Now, what is f? f is the maximum frequency of any item, f is the maximum  number of
sets any element in U can belong. So, here is a easy exercise show that Z is a set cover.

 why Z is a set cover? The reason is that let me tell it for informally and then you prove it
formally. The reason is that the number of terms here is at most f because each element
appears in at most f sets. Now, because (x j

∗)j∈[m]  is a feasible solution there must exist
for every i∈[n]  there must exist at least one  x j

∗  where e i∈S j  whose value is

greater than 1
f

 otherwise this sum will be strictly less than n strictly less than 1. So,

this  value is  at  least  one set  have value greater  than equal  to  1
f

.  hence for every

element  i∈[n] , ei  we must we are picking at least one set that contains that element.

 So, that is why it is a set cover. Now, why it is a it is a good or approximate solution? So,
for that let us alg is the by alg we denote the we denote the cost or the value of the
solution  output  by  the  algorithm  which  is  summation  weight  j  of  the  sets  that  the

algorithm outputs this is this. Now, this is less than equal to f∑ j=1

m
w j x j

∗ . Why this is

true?  Because  x j
∗≥1
f

.  So,  f x j
∗≥1 .

 This is less than equal to f∑ j=1

m
w j x j

∗ , but this is nothing, but LP opt F times LP opt

and we have seen that LP-opt which is less than equal to ILP-opt which is equal to opt.
So, we get LP opt is less than equal to ILP opt which is opt. So, this shows that the value
of the weight of the set cover is at most f times the weight of the optimal set cover. So,
hence our algorithm has an approximation factor  of f ok. So, let us stop here. Thank you.


