
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 04

Lecture 19

Lecture 19 : PTAS for Minimizing Makespan for Scheduling Jobs on Constant Number
of Machines

 Welcome. So, in the last class we have seen a fully polynomial time approximation
scheme also known as FPTAS for the knapsack problem. So, our next problem is
scheduling jobs on identical machines parallelly and again we will see a PTAS for this
problem and we will also see that there is no FPTAS for this problem unless P = NP. So,
scheduling jobs on multiple identical parallel machines. So, recall we have already seen
this algorithm the input are n jobs, n jobs with processing p1 ,…, pn, we have m machines

compute a schedule which minimizes its makespan. What is max span? It is the last
completion time of any job or in saying the same thing in other ways it is the maximum
load of any machine.

 And we have seen the least scheduling algorithm for this problem which is a simple
greedy algorithm. which achieves a two factor approximation algorithm. And then we
have seen a version of least scheduling where we sort the jobs from highest processing
time to smallest processing time and again apply the same greedy algorithm and we have
seen it is a four third factor approximation algorithm ok. So, now we will slightly modify
that algorithm and design a PTAS fully not fully polynomial time approximation scheme
for this problem.

 For that what we will design is that for we will design for every integer k and algorithm

say Ak. which provides a 1+ 1
k

 factor approximate schedule. you see this is enough to get

a PTAS if the runtime is within the PTAS boundary, but approximation factor wise this is

good because if I set k to be
1
ϵ

 I am getting a 1+ϵ factor approximation algorithm. So,

what is the idea? The idea is as we have seen in the four-third factor approximation
algorithm that it makes sense to process the longest longer jobs first and more efficiently
and we can process the shorter jobs later. So, the idea is to partition the jobs into longer
and shorter this sort of these are the two kinds of jobs.

 idea divide the jobs into longer jobs and shorter jobs ok. So, what do you mean by
longer jobs? So, a job is called long job if a job say J is called a long job if p j is greater

than You recall that we had we use two lower bounds for proving the two factor
approximation algorithm for the least scheduling algorithm. One lower bound is average
load of any machine. We know the average load it is the sum of the processing times by
the number of machines and the other lower bound was the maximum processing time of
any job. So, we use the first lower bound to define the long jobs which was the sum of
processing times by m.

 These are the this is the average load of any machine and we divide it by k. So, we say a

job is long job if it is processing time is more than
1
k m

×∑i=1

n
pi. Note that there can be

at most k×m long jobs. Other jobs are called short jobs. job is called short if it is not long
ok.

 So, the idea is you we find out the optimal schedule for long jobs which are in few in
numbers as we have argued the number of long jobs could be at most k×m and then for
the short jobs we use the list scheduling algorithm greedy list scheduling algorithm. So,
the algorithm compute an optimal schedule for the long jobs and then use least
scheduling algorithm to schedule the short jobs. So, what is the runtime for computing
the optimal schedule for long jobs? The number of schedules of long jobs is at most.
each job has can be scheduled on one of the m machines. And so, the number of possible

schedules is at most mk m which is the number of long jobs.

See which is exponential in k only if the number of machines m is a constant. And
notice that exponential in k is fine because the run time for PTAS it can be exponential in

function of epsilon and k is like
1
ϵ

. So, this run time is fine. Now, how good is this

algorithm? So, let Cmax be the makespan of the schedule.

 output by our algorithm ok. So, again like the two factor approximation analysis of local
search algorithm let l be the last job to finish. it may not be unique. So, let us write A ok.

So, Cmax is then less than equal to pl+
∑ j∈[n] , j≠l

p j

m
.

because time from 0 to Cmax−pl all machines were busy executing jobs from 1 to n

except l. Now, pl is less than equal to Now, there are two cases whether l is a short job or

long job. If l is a long job then then the schedule output by the algorithm is an optimal
schedule because we have scheduled the long jobs optimally. So, if l is a long job then

Cmax equal to opt since we have scheduled long jobs optimally. So, let us assume that l is

not a long job l is a short job.

 So, let us assume that l is a short job. So, because l is a short job we know that it is

execution time should be
∑i∈[n]

pi

mk
. So, then we have Cmax≤

∑i∈[n]
pi

mk
+
∑i∈[n] , i≠l

pi

m
. Now

use the fact that
∑i∈[n] , i≠l

pi

m
 is a lower bound on opt.

 So, this is also lower bound on opt this is less than equal to
opt
k

+opt which is

(1+ 1
k
)×opt . setting k=1

ϵ
, we obtain a PTAS for the case when the number of jobs

number of machines is constant. So, next what we do we will replace the brute force
algorithm for computing the optimal schedule for long jobs with a clever dynamic
programming algorithm which runs in polynomial time when k is some constant even for
any number of machines when number of machines is an input parameter. So, now, we
design dynamic programming algorithm to compute Now, here also we see it is not in
not needed to compute the optimal solution exactly, because you know we can have an
instance where all the jobs are long jobs and because it is an NP complete problem we do
not hope to solve the have a dynamic programming algorithm which runs in polynomial
in m time, but still compute the optimal solution. but you know it is enough if it computes

an approximately optimal solution and algorithm which is say whose output is 1+ 1
k

factor approximation algorithm because we are aiming for a PTAS.

 So, now, we design a dynamic programming algorithm to compute on 1+ 1
k

. because you

see here in this case. here it is enough that Cmax if l is the long job then we do not need

Cmax to be equal to opt it is fine even if Cmax is less than equal to opt+ 1
k

. When l is a short

job we already have we are not using the fact that the schedule on long jobs is an optimal

schedule and still we are able to show that Cmax is less than equal to (1+ 1
k
)×opt . we are

using that the schedule on long jobs is optimal only here to claim that Cmax=opt , but we

do not need Cmax=opt it is enough if we have Cmax≤(1+ 1
k
)×opt .

 And that is where we will design a dynamic programming based algorithm design
dynamic approximately optimal schedule for long jobs. ok. For that it will be convenient

to know if we know whether if we know an optimal value of the solution. So, it will be
convenient for designing the algorithm it will be convenient to have a target makespan T

for the jobs. Our algorithm will output a schedule of make span (1+ 1
k
)×opt times t if

there indeed exists a schedule with make span at most T. Let us call this algorithm give it
some name Bk, if there does not exist any with make span at most T then our algorithm

reports no reports it. So, the high level idea of this algorithm is again breaking the jobs
into long and short further. And here is the catch then we will instead of doing brute force
we will do a clever dynamic programming algorithm to reduce the search space
substantially and the runtime will be in in exponential in k only irrespective of whether
m is constant or not. So, it will be exponential in k times poly in m n.

 Once we have this algorithm Bk, how do you get this target schedule T, target make span

T, this is very important. here again because you know in the problem we do not have
any target makespan, but we claim that if we have an algorithm Bk which can do this job

with respect to a target makespan T then also it is enough because then we can do a
binary search if we know the range where the optimal lies and we know the range. For
example, we know so, let opt be the optimal make span, then we know that opt is greater

than equal to we have two lower bounds one is average load which is
∑i=1

n
pi

m
 this is the

average load this and opt because opt is integral let us assume we have assumed all pi

values of processing times are integral. So, this we can take sill and maximum processing
time pi, i equal to 1 to n both is a lower bound. So, I can use the max this is one and the

upper bound is we know we have a schedule which takes time at most summation the
average load of any machine plus the maximum load of any machine of any job.

 So, that is the first you know least scheduling algorithm for that for this problem which
is a two factor approximation algorithm. So, this gives an upper bound. Now, once we
have this range and this range is not big then we can do a binary search and use this

algorithm to find out the optimal T not optimal T we will find out an 1+ 1
k

 approximately

optimal schedule ok. So, this we will see in the next class ok. So, let us stop here.

