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 Welcome. So, in the last  class we have seen a fully polynomial time approximation 
scheme  also  known  as  FPTAS  for  the  knapsack  problem.  So,  our  next  problem  is 
scheduling jobs on identical machines parallelly and again we will see a PTAS for this 
problem and we will also see that there is no FPTAS for this problem unless P = NP. So, 
scheduling jobs on multiple identical parallel machines. So, recall we have already seen 
this algorithm the input are n jobs, n jobs with processing p1 ,…, pn, we have m machines 

compute a schedule which minimizes its  makespan. What is  max span? It  is  the last 
completion time of any job or in saying the same thing in other ways it is the maximum 
load  of  any  machine.

 And we have seen the least scheduling algorithm for this problem which is a simple 
greedy algorithm. which achieves a two factor approximation algorithm. And then we 
have seen a version of least scheduling where we sort the jobs from highest processing 
time to smallest processing time and again apply the same greedy algorithm and we have 
seen it is a four third factor approximation algorithm ok. So, now we will slightly modify 
that algorithm and design a PTAS fully not fully polynomial time approximation scheme 
for  this  problem.

 For that what we will design is that for we will design for  every integer k and algorithm 

say Ak. which provides a 1+ 1
k

 factor approximate schedule. you see this is enough to get 

a PTAS if the runtime is within the PTAS boundary, but approximation factor wise this is  

good because if I set k to be 
1
ϵ

 I am getting a 1+ϵ  factor approximation algorithm. So, 

what is the idea? The idea is as we have seen in the four-third factor approximation 
algorithm that it makes sense to process the longest longer jobs first and more efficiently 
and we can process the shorter jobs later. So, the idea is to partition the jobs into longer  
and  shorter  this  sort  of  these  are  the  two  kinds  of  jobs.



 idea divide the jobs into longer jobs and  shorter jobs ok. So, what do you mean by  
longer jobs? So, a job is called long job  if a job say J is called a long job if p j is greater 

than   You  recall  that  we  had  we  use  two  lower  bounds  for  proving  the  two  factor 
approximation algorithm for the least scheduling algorithm. One lower bound is average 
load of any machine. We know the average load it is the sum of the processing times by  
the number of machines and the other lower bound was the maximum processing time of 
any job. So, we use the first lower bound to define the long jobs which was the sum of 
processing  times  by  m.

 These are the this is the average load of any machine and  we divide it by k. So, we say a 

job is long job if it is processing time is more than 
1
k m

×∑i=1

n
pi. Note that there can be 

at most k×m long jobs. Other jobs are called short jobs. job is called short if it is not long 
ok.

 So, the idea is you we find out the optimal schedule for long jobs which are in few in  
numbers as we have argued the number of long jobs could be at most k×m and then for 
the short jobs we use the list scheduling algorithm greedy list scheduling algorithm. So, 
the  algorithm  compute  an  optimal  schedule  for  the  long  jobs  and  then   use  least 
scheduling algorithm to schedule the short jobs. So, what is the runtime for computing 
the optimal schedule for long jobs? The number of schedules  of long jobs is at most.  
each job has can be scheduled on one of the m machines. And so, the number of possible 

schedules  is  at  most  mk m which  is  the  number  of  long  jobs.

See which is  exponential in k only if the number of machines m  is a constant. And  
notice that exponential in k is fine because the run time for PTAS it can be exponential in  

function of epsilon and k is like  
1
ϵ

.  So, this run time is fine. Now, how good is this 

algorithm?  So,  let  Cmax be  the  makespan  of  the  schedule.

 output by our algorithm ok. So, again like the two factor approximation analysis of local  
search algorithm let l be the last job to finish. it may not be unique. So, let us write A ok.  

So,  Cmax is  then  less  than  equal  to  pl+
∑ j∈[n] , j≠l

p j

m
.

because time from 0 to  Cmax−pl all  machines were busy executing jobs from 1 to n 

except l. Now, pl is less than equal to Now, there are two cases whether l is a short job or 

long job. If l is a long job then then the schedule output by the algorithm is an optimal 
schedule because we have scheduled the long jobs optimally. So, if l is a long job then 



Cmax  equal to opt since we have scheduled long jobs optimally. So, let us assume that l is  

not  a  long  job  l  is  a  short  job.

 So, let us assume that l is a short job. So, because l is a short job we know that it is  

execution time should be 
∑i∈[n]

pi

mk
. So, then we have Cmax≤

∑i∈[n]
pi

mk
+
∑i∈[n] , i≠l

pi

m
. Now 

use  the  fact  that  
∑i∈[n] , i≠l

pi

m
 is  a  lower  bound  on  opt.

 So,  this  is  also  lower  bound  on  opt  this  is  less  than  equal  to  
opt
k

+opt  which  is 

(1+ 1
k
)×opt .  setting  k=1

ϵ
,  we obtain a PTAS for the case when the number of  jobs 

number of machines is constant. So, next what we do we will replace the brute force 
algorithm  for  computing  the  optimal  schedule  for  long  jobs  with  a  clever  dynamic 
programming algorithm which runs in polynomial time when k is some constant even for 
any number of machines when number of machines is an input parameter. So, now, we 
design dynamic programming algorithm  to compute  Now, here also we see it is not in 
not needed to compute the optimal solution exactly, because you know we can have an 
instance where all the jobs are long jobs and because it is an NP complete problem we do  
not hope to solve the have a dynamic programming algorithm which runs in polynomial 
in m time, but still compute the optimal solution. but you know it is enough if it computes 

an approximately  optimal  solution and algorithm which is  say whose output  is  1+ 1
k

 

factor  approximation  algorithm  because  we  are  aiming  for  a  PTAS.

 So, now, we design a dynamic programming algorithm to compute on 1+ 1
k

. because you 

see here in this case. here it is enough that Cmax if l is the long job then we do not need 

Cmax to be equal to opt it is fine even if Cmax is less than equal to opt+ 1
k

. When l is a short 

job we already have we are not using the fact that the schedule on long jobs is an optimal  

schedule and still we are able to show that Cmax is less than equal to (1+ 1
k
)×opt . we are 

using that the schedule on long jobs is optimal only here to claim that Cmax=opt , but we 

do  not  need  Cmax=opt  it  is  enough  if  we  have  Cmax≤(1+ 1
k
)×opt .

 And  that  is  where  we  will  design  a  dynamic  programming  based  algorithm design 
dynamic  approximately optimal schedule for long jobs. ok. For that it will be convenient  



to know if we know whether if we know an optimal value of the solution. So, it will be 
convenient for designing the algorithm it will be  convenient to have a target makespan T 

for the jobs. Our algorithm will output a schedule of make span (1+ 1
k
)×opt  times t if 

there indeed exists a schedule with make span  at most T. Let us call this algorithm give it 
some name Bk, if there does not exist any  with make span at most T then our algorithm 

reports no reports it. So, the high level idea of this algorithm is again breaking the jobs 
into long and short further. And here is the catch then we will instead of doing brute force 
we  will  do  a  clever  dynamic  programming  algorithm  to  reduce  the  search  space 
substantially and the runtime will be in  in exponential in k only irrespective of whether  
m  is  constant  or  not.  So,  it  will  be  exponential  in  k  times  poly  in  m  n.

 Once we have this algorithm Bk, how do you get this target schedule T, target make span 

T, this is very important. here again because you know in the problem we do not have 
any target makespan, but we claim that if we have an algorithm Bk which can do this job 

with respect to a target makespan T then also it is enough because then we can do a 
binary search if we know the range where the optimal lies and we know the range. For 
example, we know so, let  opt be the optimal make span, then we know that opt is greater  

than equal to  we have two lower bounds one is average load which is 
∑i=1

n
pi

m
 this is the 

average load this and opt because opt is integral let us assume we have assumed all  pi 

values of processing times are integral. So, this we can take sill and maximum processing 
time pi, i equal to 1 to n both is a lower bound. So, I can use the max this is one and the 

upper bound is we know we have a schedule which takes time at most summation the 
average  load  of  any  machine  plus  the  maximum  load  of  any  machine  of  any  job.

 So, that is the first you know least scheduling algorithm for that for this problem which 
is a two factor approximation algorithm. So, this gives an upper bound. Now, once we 
have this range and this range is not big then we can do a binary search and use this 

algorithm to find out the optimal T not optimal T we will find out an 1+ 1
k

 approximately 

optimal schedule ok. So, this we will see in the next class ok. So, let us stop here.


