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Lecture  18  :  FPTAS  for  Knapsack

 Welcome. So, in the last class we have seen a dynamic programming based algorithm 
which runs in pseudo polynomial time for the knapsack problem. So, today we will use 
that algorithm to design a fully polynomial time approximation scheme also known as 
FPTAS for the knapsack problem. So, today's topic is an FPTAS. for knapsack. So what 
was  the  running  time  of  our  dynamic  programming  based  algorithm  for  knapsack? 
dynamic  programming  based  algorithm for  knapsack   runs  in  time  b  go  of  n  times 
minimum of b and v, where n is the number of  items B is the capacity of knapsack and V 
is   sum  of  values  of  the  item.

 The idea for designing FPTAS for knapsack is to scale down the sizes of the items, so 
that  and b also. So, that we can use this algorithm which runs in polynomial time if one 
of b or v is polynomial if one of B and or V is polynomial related polynomial upper  
bounded of n. So, minimum of B and V is less than equal to poly n. So, the idea  is to 
bring down minimum of B, V to be bounded above by some polynomial function of n 
without compromising  the quality of the solution too  we have to compromise the quality 
of the solution to some extent because knapsack is a NP complete problem and hence 
assuming  P≠NP we do not hope to have a polynomial time algorithm for knapsack.

 But we want to minimize the compromise we will make the quality of the solution. So, 
for that  we scale down the values of every item by  some scaling factor say  μ whose 
value we will decide later we will find out the value of mu which we need to set. So, that 

our compromise to the quality of the solution is small. So, formally  we define v i
’=⌊

v i
μ

⌋   

and the sizes remain same the  sizes of the items remain the same. By bringing down the  

value of every item what we have essentially obtained is let us define V ’=∑ v i
’ which is 

∑ ⌊
v i
μ

⌋  which  is  less  than  equal  to



 
1
μ
∑ v i which is 

V
μ

. So, let us call the new instance  I ’ and observe that set of items. is 

feasible in I that is their sum of sizes is less than equal to the capacity of the bag if and  
only if it is feasible  in  I ’ ok. Now, let us find out the value of  μ for that the dynamic 

programming based  algorithm for knapsack runs in time O (nV ’) for the instance I ’. Why 

this is the case? Because it turns in time we go of n times minimum of V ’ and B and we 

have we will choose μ in such a way that 
V
μ

 will be less than B. So, towards that let m be 

the  maximum value of any item in the instance I that is M=max i=1
n v i, then we observe 

that  V ≤nM  ok. also because we have assumed without loss of generality that size of 
every item is less than equal to the size of capacity of knapsack then M is a lower bound 
on opt. Moreover, since we have assumed  without loss of generality that  si≤B for all 

i∈ [n ], it follows that opt  which is the optimum value of a set of items whose total size is 

less than equal to B, opt ≥M . So, you see using M we get a very good handle on opt that 
is  we  have  opt  is  in  between  v  which  is  nM .

 So, let us write nM  and greater than equal to m ok good. Now, it makes sense thus it 
makes sense to set  μ in such a way that  n μ what could be the maximum difference of 
values. for any set S of items V of S which is the sum of the values of the items in S. This 

how  this  thing  compare  with  μ v’ (S ).  So,  this  is  v’ (S ) this  is  μ×∑ v i
’ which  is 

μ×∑ ⌊
v i
μ

⌋  which is of course, less than equal to μ v’ (S ) this is less than equal to v(S), 

but  this  is,  but  how  much  it  can  it  can  be  less.

 So, for that μ v’ (S ) which is μ×∑ ⌊
v i
μ

⌋ . Now, each of this quantity differs can differ 

from v i by at most  μ. So, this is greater than equal to μ×n since 
v i
μ

  if you divide any 

integer with some number and you take the floor and you multiply this number, then this 
compares  it  with  v i this  can  drop  by  at  most  μ.

 So,  this  is   v (S )−n μ ok.  Now,  we  want  our  alg.  So,  what  is  the  algorithm?  The 
algorithm is you take the items scale down their values solve that and output that that set.  
So, let us write the pseudo code of the algorithm. that will help us to determine what is 
the  value  of  μ.

So, we will set v i
’ to be 

v i
μ

. So, we will set mu we will see what value of μ in we need to 

set this is for all i∈ [n ]. and then we use the dynamic programming algorithm to obtain an 



optimal solution say S which is a subset of items. of I ’, what is I ’? The same set of items 

remain their values becomes just v i
’ and their sizes remain same ok and then you output S. 

So,  this  is  the  pseudocode.

 So, what is ALG? ALG is an optimal solution of I ’. Now, ALG equal to v (S ) where S is 

an  optimal solution of  I ’ this is exactly what we are doing we are scaling down the 

values getting an instance I ’ we are solving it getting an optimal solution S and simply 

outputting that set of items. So, this is v (S ). I want to show that this is not too less. So, 

Now, I need to use that S is an optimal solution of I ’ that is why I need to connect v (S ) 
with v ' (S ). So, v (S ) I want to write greater than equal to because I want to show ALG is 

greater  than  equal  to  something.

 Now, here I will use the inequalities. There are two inequalities which connect v (S ) with 

v ' (S ). One is  one is here what we have is from here that v ' (S ) is less than equal to v (S ) 

this is one inequality and the other one is here that v ' (S )  is greater than equal to 
v (S )
μ
−n. 

So, these are the two inequalities we have.  v (S )≥ μ v ' (S ) because in v’ we are dividing by 

μ in v we are not dividing by μ it original valuations remain. So, you have let us write it 

clearly μ times  sorry we have v (S ) is greater than equal to μ v ' (S ). So, let us write there 

v (S )≥ μ v ' (S ), and now μ v ' (S ) is greater than equal to v (S )−n μ ok. I want this to be this 

to be small with respect to opt. So, we want  n μ to be at most  ϵ ×opt , but we do not 
know opt, but we know opt is at least M. So, it is enough. to ensure that n μ is at most 
epsilon  times  M  which  in  turn  ensures  that  n μ is  at  most  ϵ ×opt .

 So, one way to guarantee that is to set n μ  equal to ϵ ×M  which gives us what μ to set μ 

equal to ϵ
M
n

. So, we set this μ ok. Now, we finish the algorithm. So, this is ϵ
M
n

 where 

M equal to maximum valuations of any item ok. So, with this now let  us finish the  
analysis  that  it  is  a  1+ϵ  factor  approximation  algorithm.

 So, let S be the output of the algorithm as usual. sorry let us start with ALG, ALG equal 

to v (S) which is summation which is we need to go to I ’ see which is greater than equal 

to μ×v’(S). Now, S is an optimal solution of I ’. So, S is an optimal solution of I ’ and I 

want  to  connect  it  to  opt.  So,  for  that  let  O  be  an  optimal  solution  of  I.

 So, for I ’ I know S is an optimal solution. So, this is greater than equal to μ×v’(O) this 

is so, because S is an optimal solution of I ’. Now, I use this fact for any set S I know that 

μ×v’(S) is greater than equal to v (S)−n μ here this holds  for all set S⊆[n]. So, this we 

use here this is  greater than equal to  v (O)−n μ ok.  v (O) is  nothing, but  opt−n μ is 



nothing  but  ϵ M .

 Now, ϵ M  is a lower bound on opt that means, M is at least opt this is greater than equal  
to  opt−ϵ×opt  since opt  is  greater  than equal  to  M which is  (1−ϵ )×opt .  Hence,  it 

outputs a set which is set of items whose total size is less than equal to capacity of the 
bag and its value is at least 1−ϵ  times the optimal function optimal set and the runtime of 

the algorithm. runtime see it is O(n×V ’). Now, recall what is the runtime of the original 

dynamic programming algorithm, it is n times minimum of V ’ and B and minimum of V ’ 

and  B  is  less  than  equal  to  V ’.

 So, this is O(n×V ’) V ’ of any set is less than equal to v (S)−μ. So, this is 
v
μ

 and what is 

μ?  μ is  ϵ
M
n

.  O( n
2×V
ϵ M

)=O( n
3

ϵ
).

 So, you see the runtime is polynomial in n and ϵ . So, let us stop here. Thank you.


