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Lecture  17  :  Pseudo  Polynomial  Time  Algorithm  for  Knapsack

 In the last couple of lectures, we have been seeing how greedy algorithms and local  
search  heuristics  can  be  used  for  designing  approximation  algorithms  with  probable 
guarantees. Now, we use another popular algorithm design techniques known as dynamic 
programming and we will see how dynamic programming can be effectively used for 
designing polynomial  time approximation algorithms.  So,  we start.  to  see  the  use  of 
dynamic  programming  for  designing  polynomial  time.  approximation  algorithms.  So, 
again  we  will  see  we  will  learn  this  through  various  applications  through  various 
examples.

 So, our first problem is the classical knapsack problem. So, what is the input? We have n 
items  with  value  with  respective  values   v1 ,…, vn and  sizes  s1 ,…, sn.  We have  one 

knapsack or bag of capacity B  the goal the goal is to compute the subset of items  such  
that their total size is less than equal to the capacity of the bag and their total value is  
maximized. It can be shown that this is NP complete you can take it as a homework.

 The  knapsack  problem   is  NP  complete.  And  now  we  will  design  a  dynamic 
programming algorithm for the knapsack problem. So, the algorithm is very simple. So, 
we   Now  design  dynamic  programming  algorithm  for  knapsack.  because  it  is  NP 
complete the runtime of the algorithm will not be ah polynomial, but it will be what is  
called  weakly  polynomial.

 It will be polynomial of the values of the integers ah which are input . So, it is a simple 
algorithm. So, let us write the pseudo code . So, we will maintain or let me write the idea 
we  maintain or we compute the set which I call A i containing  all value size pair pairs of 

undominated  subset  of  items  from  1  to  i.

 Now, what is this undominated? So, 2 subsets of items or let me write a subset  of items 
is said to dominate another. subset of items subset y of items if the value of x which is  
defined as the sum of the values of the items in x this is greater than equal to  value of y 



and the size of x again this is sum of the sizes of the items this is less than equal to S of y. 
So, if both of them hold and at least one of the above two inequalities  is tight is strict.  
So, the idea is if I have 2 bundles 2 set of items the bundle x who that weight the size of x 
is less than equal to size of y, but the value is more than y then it  is then we say x 
dominates y or the value may be same, but the size of x is strictly smaller then also we 
say that x dominates y. of course, if both size is size of x is strictly smaller than size of y  
and value of x is  strictly greater  than value of  y then also obviously,  we say that  x 
dominates  y.

 So, in this set A y we will store the value size pair of all undominated subsets of items 
and we will see how we maintain that set. and in the at the end we will argue that why  
this set cannot be too large and why it is enough in a n a n is the set of all value size pairs  
of all undominated subsets of 1 to n and the optimal solution must be undominated. So, 
that is why it makes sense to store undominated pairs. So, note that  any optimal solution 
any optimal solution O subset of [n] for any optimal solution O this pair the value of O 
and  size  of  O.  this  pair  is  an  undominated  pair  and  hence  this  belongs  to  An.

 So, by looking at  An and if it has it has small number of elements then I can find out 

which I can find out the optimal solution by picking that pair whose size is less than 
equal to b and value is highest possible ok. So, now let us see the pseudocode. So, A1 is 

the set of all undominated pairs of the singleton item I, it has two subsets singleton I and 
empty set and both is both are undominated. So, for A1 I know that for singleton set value 

is 0 and size is 0 and for singleton for singleton item 1 not I this is 1 this is (v1 , s1). So, 

this  is  we  know  a  1  now  I  will  iteratively  compute  A i+1 from  A i.

 So, for each i equal to 2 to n, A i  is A i−1. So, I start from there and I from for every pair 

of for every pair I add the value and size of the ith item ok. So, here I am looking at this 
set i which is 1 2  and I have already I already have A i−1 this is for the set of items i−1 I 

have value and size pair of all undominated sets. Now, you see the undominated sets of a 
i which is a subset of 1 to  i−1 they are already present in  A i−1. So, that is why I am 

keeping  them  and  for  each  of  them  I  am  trying  to  augment  i.

 So, what I do is that for each (t ,w)∈A i−1 add (t+v i ,w+si) to A i. So, after this for loop 

the size of A i is exactly twice the size of A i−1. And then I compare every pair of pairs and 

if I see that one pair dominates other pair then I remove the dominated pair. And this that  
means, I check if I have these two conditions are satisfied or not and at least one of them 

should  hold  strictly  and  that  can  be  done  in  time  O (|A i|
2).

 So, remove all dominated pairs  from A i and that is it. Now, what should what is the 



maximum possible value that I get within the capacity of B that is I look at the set An and 

there I  look at the maximum I maximum possible values. So, max (t ,w) ok and I add 

this if  the size s+w is less than equal to B capacity of the bag. So, it does not make any 
sense to store the information of any subset whose capacity is greater than B ok. So, s+w 
is less than equal to B and here also we can assume that here is a important assumption 
we assume  without loss of generality that the size of every item is less than equal to  B 
for all  how it is without loss of generality? Because if there exist an item whose size is  
more  than B  that  item  can  never  be  part  of  any  optimal  solution.

 So, we delete that item from that from the instance and work with the reduced instance.  
So, this way because I am storing only the information of those pairs whose size is less 
than equal to B in An I just need to find out the pair whose value is the highest ok. So, 

this you prove it formally using loop invariant. that is the proof of correctness. Proof that  
the  above  dynamic  programming  algorithm  always  outputs  an  optimal  solution  ok.

 So, what is the time taken time complexity of  for that all we need to do is we need to  
bound the maximum size of A i. Now, here is an important observation. So, let  A i with 

this pairs (x1 , y1) ,(x2 , y2) ,…,(xm , ym). what we do we arrange them in in say decreasing 

order  of  values.  So,  by  renaming  suppose  first  is  value  yeah.

 suppose x1≥x2≥x3≥...≥xm. first observe that I cannot have any equality 2 items cannot 

have same value because if 2 item has same value suppose  x1=x2 then their y values 

must be different if y values are also same then they are same pair which is not allowed in 
a set. Now, if y values are different then one dominates another. So, suppose if  x1=x2, 
but  y1< y2 then  (x1 , y1) dominates  (x2 , y2) and we are removing all undominated pairs 

that  is  why  all  this  inequalities  must  be  strict.

 So, this will hold. what we have and all these are integers this and xi is an integer, hence 

cardinality  A i is less than equal to maximum value possible. V which is or  V +1 it can 

range from 0 to  V. So, is  V +1 which is where V=∑i∈[n]
v i.  total value of all items. 

Similarly, it follows that cardinality A i is less than equal to  1+B capacity of the bag the 

y  values  can  range  from  0  to  B  only  ok.

 So, what is the running time of the algorithm? it iterates over n iterations and each one  
can be executed in time big O of cardinality A i each iteration. So, the runtime is big O of 

n times minimum of  B and V because from here what we get is cardinality A i is less than 

equal to 1+min(B ,V ) for all i∈[n]. So, this is the runtime you see it is not a polynomial 

time algorithm because the input is input size is log of these values and sizes. So, such 
algorithms are called pseudo polynomial time algorithms. polynomial in the values of 



integers  and  input  size  is  called   pseudo  polynomial  time  algorithm.

 An algorithm  whose run time is polynomial in the values of the integers ah integer 
inputs  if  input  contains  integers  integer  inputs  and  other  input  size  is  called  pseudo 
polynomial  time  So,  next  we will  see that  we can use this  pseudo polynomial  time 
algorithm for knapsack for designing what is called an FPTAS. So, what is the definition 
of  PTAS  polynomial  time  approximation  scheme.  polynomial  time  approximation 
scheme PTAS. What is it? It is a family of algorithms  PTAS is a family of algorithms A ϵ 

for  every ϵ  greater than 0 such that A ϵ is 1+ϵ  approximation algorithm  for minimization 

problem  and  1−ϵ  approximation  algorithm  for  maximization  problem  and  1  minus 
epsilon approximation algorithm for problems for maximization problems and runs in 

time  big O of nf (ϵ ). So, for every epsilon it is polynomial time algorithm, there is another 
concept which is  called FPTAS which is  called fully polynomial time approximation 
scheme.

 FPTAS which is same as peters approximation guarantee is the  same as petas, but A 
epsilon runs in time polynomial on n and 1 over epsilon. So, in the next class we will see 
an FPTAS algorithm for knapsack problem using this dynamic programming algorithm 
ok. So, let us stop here. Thank you.


