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 Welcome. So, in the last lecture we have seen that the travelling salesman problem the 
symmetric version does not have any good or meaningful approximation of algorithm in 
polynomial time. So, today we will see a very natural special case of travelling salesman 
problem which is called metric travelling salesman problem which admits constant factor 
approximation algorithms. So, today's topic is metric  travelling salesman problem. So, 
what is metric travelling salesman problem? We assume in this problem  that the distance 
between cities satisfy metric property. what are they? The first one is symmetry that for  
all  i , j∈[n] , i≠ j the distance from i to j  is same as distance from j to i  and triangle 
inequality.

 for all i , j , k∈[n] i, j, k are different cities that means, no two of them are same  then the  
distance between i and j is less than equal to distance between i and k plus distance  
between  j  and  k.  This  holds  for  any  triple  triplet  of  cities  i  j  k.  Now,  in  travelling 
salesman  problem  we  are  looking  to  find  a  minimum  cost  or  minimum  weight 
Hamiltonian cycle. There is a cousin of Hamiltonian cycle which is called Eulerian cycle 
which  is  easy  to  compute.

 So, what is Eulerian cycle? So Eulerian cycle of a graph is a cycle  that visits every age  
exactly once. ok. In particular that Eulerian cycle will visit all vertices also, but maybe 
multiple times. So, here is an important result which is quite easy to prove you can take it  
as a homework. has an Eulerian cycle if and only if the degree  of every vertex is even.

 Moreover, an Eulerian cycle  if it exists can be computed in polynomial time. Not only 
that you see the number any Eulerian cycle is and the weight of any Eulerian cycle is an 
upper bound on the weight of any travelling salesman tour because it visits all edges. It is  
the its  weight is  sum of the weights of all  edges.  So,  the idea of this approximation 
algorithm is to have a subgraph of it subgraph of the given complete graph G which is 
spanning  that  means,  all  vertices  are  there  and  connected  and  connected  and  it  is 
Eulerian.  So,  idea.



 find an Eulerian connected spanning subgraph, spanning means it ah has all the vertices 
of G. of the input graph, input graph is a complete graph. Now, the goal is to find an 
Eulerian connected spanning subgraph, which has as small edges as possible, which has 
small  number of edges ok. Now, what will  happen if  I  find if  I  am able to find an 
Eulerian connected spanning subgraph which has small number of edges a small means 
weight total  weight because the graph is  weighted.  then I  will  have an Eulerian tour 
which I can compute in polynomial time and then I will bypass I will shortcut the I will  
bypass the repeated visits and then thereby converting the Eulerian cycle to a travelling 
salesman  tour.

 So, if I find that Eulerian connected spanning  after finding that subgraph H let us call it  
H, then we compute an Eulerian cycle of H let us call it C Eulerian cycle C of H this 
subgraph in polynomial time. Now, then from C  which can be seen as a sequence of  
vertices in the order of the Eulerian cycle viewed as a sequence of vertices. We delete 
every occurrence of every vertex except the first occurrence. let the resulting cycle be C 

prime,  then  by  triangle  inequality   cost  of  C ’ is  less  than  equal  to  cost  of  C.

 This trick is called short circuiting, this is called short circuiting. ok. To see this, let 
i1 , i2 ,…,ik be a sequence of vertices in C and  i2 ,…,ik−1 got deleted because of  short 

circuiting.  Pictorially  here  is  i1 then  i2 this  was  the  part  of  the  cycle  or  C  of  the 

Hamiltonian  tour  this  is  i3.

 ik. Now, I delete this edges, this vertices got deleted and the subsequent edges and I add 

this edge. You see the cost of the edge with from i1 , i2 ,…,ik is less than the sum of the 

cost of the deleted edges, this is because triangle inequality.  From triangle inequality 
ci1 ik≤ci1 i2+...+cik−1 ik and  reduced  by  the  total  cost  of  this  edges.

 Now, because of triangle inequality and hence short cutting short circuiting the tool 
cannot increase the cannot increase the total cost of the tool. So, the so, if I have so, the 
question boils  down to finding a good subgraph which is  Eulerian and spanning and 
connected.  So,  the  first  idea  is  to  have  a  spanning  tree.  So,  algorithm  1.

 So, we will describe two  a spanning tree T of the input graph. So, let T be the spanning  
tree, but spanning tree or any tree is never Eulerian because any tree always has at least  
one vertex of  degree 1.  So,  how to make how to convert  this  T as  a  spanning as  a 
Eulerian graph? So, we add a parallel edge  to every edge of T with same cost. So, let H 
be  the  resulting  graph.  resulting  subgraph.

 Let us see it pictorially suppose this tree T is look looks like suppose this is the tree look  



like what I do is add parallel edge to every edge. So, H will look like first let us draw tree  
and add a parallel edge to every edge of same width. Now you observe that the degree of 
every vertex i in H is exactly 2 times degree of that vertex i times t because the number of 
edges has simply doubled.  Moreover  H is connected since T is  connected and H is 
spanning.

 all vertices ok. So, what is the total cost of the edges of T edges of H? C of H let us  
define it as or cost of H. you see which is the sum of the edges of H sum of their costs 
which is 2 times sum of the edges the H set of the tree C (H ) which is 2 times cost of  So, 

and the ALG is less than equal to C (H ) cost of the Eulerian tour H which is the sum of 

the weights of the edges of H. Now, to minimize this which is 2c (T ). Now to minimize 

this we should pick that spanning tree which has minimum weight. So, we instead of 
starting  with  any  arbitrary  spanning  tree  we  compute  a  minimum spanning  tree  ok.

 We use  standard   any standard  greedy algorithm for  example,  Prim's  algorithm.  or 
Kruskal's algorithm to compute a minimum spanning tree. T of G ok, but how does this C 
of T cost of minimum spanning tree compare with opt. Now, here is a crucial observation 
claim that the  cost of any optimal travelling salesman tour is at most or at least  the cost  
of any minimum spanning tree. To see this  let O be any optimal travelling salesman tour 
delete   any  edge  from  O,  this  will  be  a  Hamiltonian  path  relate  any  edge  E.

 So, observe that O  is a Hamiltonian path because we can I can delete any edge from a  
cycle and still all the vertices in the cycle remains connected. It visits all vertices of the 
graph and hence O minus is a Hamiltonian path and thus  meaning a spanning tree. Thus  
we have cost of O because all costs are positive. that we always assume cost of O is less 
than equal to cost of O minus E which is the cost of any minimum spanning tree ok. So, 
which  is   here  we  are  picking  T  if  T  is  a  minimum  spanning  tree.

 So, this is equal to cost of T ok. So, this will be other way this inequalities cost of O is 
greater than equal to  cost of C minus. So, I am dropping an edge with positive weight  
and this is a this is a spanning tree which is whose cost will be greater than equal to cost  
of minimum spanning tree. So, now, we have we can show the approximation guarantee 
ALG is less than equal to twice cost of T where T is a minimum spanning tree which is  
less than equal to C of O which is  this is twice opt. Hence, the approximation factor of  
our algorithm  is at least 2 ok. Let us stop here.


