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 Welcome. So, in the last class we have seen a (2−
1
m

) factor approximation algorithm 

for ah scheduling jobs on multiple identical machines and we have used the local search 
based  method  for  designing  that  algorithm.  So,  in  this  class  we  will  see  a  greedy 
algorithm for designing ah this scheduling. So, a greedy algorithm to schedule jobs on 
multiple identical machines. So, we will design and we will discuss an algorithm which is 
called list scheduling algorithm. So, we list the jobs arbitrarily let it be  j1 ,…, jn and in 
each iteration I pick a job and assign it to the least heavy machine, least busy machine.

 In each iteration initially all jobs are unassigned in each iteration we pick the next job  
and assign it to the least heavy, least loaded machine. Clearly this is a polynomial time 
algorithm, we first claim that this is a two factor approximation algorithm. The above 

greedy algorithm has an approximation factor of at most  (2−
1
m

). And the proof is very 

easy it is only the observation that if we start the local search algorithm with the output of 
the greedy algorithm, the local search algorithm terminates in in one iteration it does not 
make  any  local  move.

 If we start  the local search algorithm, local search based algorithm for job scheduling 
with the  output of the above greedy algorithm, then the local search based algorithm 
does not make any local move and terminates immediately. why this is so? Because for 
each machine look at the job which is running at the last to see this for each machine say  
machine j  consider the job  i j that is executed last on that machine. Now, the greedy 

algorithm assign this job i j to that machine means that all other machine are as where are 

as busy as that machine j at that time when i j has started. So, since the greedy algorithm 

assigned job i j to machine j, no machine  was available at time C ij− pij−1 at time before 
this  ok.  And  in  subsequent  iterations  other  jobs  got  assigned  to  other  machines  in 



subsequent iterations of the greedy algorithm only increases  the load of other machines.

 Hence all machine are busy. at time C ij− pij−1. This implies that there is no local move 

for from for the job i j. This implies  there is no local move available from machine M j. 
ok and because now the algorithm terminates the local search based algorithm terminates 
and we have already seen that the approximation ratio of the local search based algorithm 

is at most (2−
1
m

) it follows that the approximation ratio of this greedy algorithm is also 

at  most  (2−
1
m

).

 Hence the approximation ratio of greedy algorithm is at most (2−
1
m

) ok. So, this is the 

list scheduling algorithm. Next we will refine this list scheduling algorithm instead of 
picking or running this algorithm for arbitrary list, we will pick a specific list which is the 
non  increasing  order  of  the  jobs.  So,  instead  of  using  arbitrary  list  for  the  greedy 
algorithm  we sort the jobs in non increasing order of their  processing time and run the 
least  scheduling  algorithm.  using  it  ok.

 Now, we show that this has an approximation ratio of at most 4 by 3. So, here is a 
theorem. So, this is called the longest processing rule longest processing time rule. So, 
this   algorithm is  called the  longest  processing time rule.  So,  we are  processing the 
longest  jobs  first.

 So, there is a theorem the longest processing  
4
3

 approximation algorithm for scheduling 

jobs.  on  identical  machines  to  minimize  makespan  proof.  So,  it  is  a  proof  by 
contradiction. So, suppose not suppose not then there exists  A counter example showing 
that the makespan of the schedule output by the algorithm is more than 4 third times the 
optimum makespan. There exists a counter example showing that the makespan  of the 

schedule  output  by  the  algorithm  is  more  than  
4
3

 times  the  optimal  makespan.

 So, by renaming the jobs we can assume without loss of generality. So, consider such a 
counterexample by renaming  the jobs we can assume without loss of generality that

p1≥ p2≥…≥ pn

Next we say that we can assume without loss of generality that pn is the last job. So, we 

can  also assume without loss of generality that pn is the last job to finish why suppose 

not suppose pl is the last job if not then supposing pl supposing pl be the last job to finish 



we  can  delete.

 the jobs J l+1 ,…, J n and still the counterexample remains valid. this is so, because this is 

so,  because  deleting  J l+1 ,…, J n keeps  ALG  unchanged  but  possibly  decreasing 

opportunity. So, if already with jobs J l ,…, J n ALG is greater than 
4
3

 times OPT and if I 

delete  the  jobs  J l ,…, J n then  ALG remains  same,  but  OPT can  decrease  potentially 
because deleting jobs can potentially decrease OPT. So, the in the new instance also ALG 

is greater than 
4
3

 times OPT. So, we have assumed without loss of generality that J n is 

the  last  job  to  finish  ok.

 Now, we say that if pn is less than equal to 
opt
3

, then by the analysis of the local search 

algorithm, then by the analysis of the local  search based algorithm we have ALG. If you 

recall  ALG=( 1m∑ pi)+ pn and both of them are is less than equal to opt. is less than 

equal to opt and this if this  pn≤
opt
3

 under this assumption if this is the case. Then we 

have this is then ALG is less than equal to 
4
3

 opt ok. So, but this is a counter example, but 

we  know  that  in  this  example  ALG  is  greater  than  
4
3

 opt.

 However, since it is the instance is a counter example, we have assumed  that ALG is 

greater than  
4
3

 opt.  So, alg is so,  pn cannot be less than  
opt
3

 because it  is a counter 

example,  hence  pn is  greater  than  
opt
3

.  but  in  this  case  observe  that  in  any optimal 

schedule any machine cannot process more than 2 jobs. Then in the optimal schedule no 
machine  process says more than 2 jobs ok, but it turns out that under this assumption this 
problem is polynomial time solvable ok. So, this this shows that this counter examples 
can  only  be  polynomial  time  solvable.

 and and in particular the greedy algorithm it is more the greedy algorithm outputs the 
optimal solution under this assumption the greedy algorithm outputs the optimal solution 
and hence this there cannot exist no such counter example. So, here is a lemma which I  
leave it as a homework for you to prove not difficult to prove just some simple case 
analysis that for any input  if the processing time if the processing time of every job is 

more than  
opt
3

. the greedy algorithm outputs an optimal solution. Hence, no count no 



such counter example can  which in turn shows that  the approximation factor of the 
greedy  algorithm  is  at  most  fourth  third  which  proves  the  claim  ok.

 Let us stop here. Thank you.


