
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 03

Lecture 11

Lecture 11 : Local Search Algorithm for Scheduling Jobs on Multiple Identical Machines

 Welcome. So, in the last class we have seen a greedy algorithm for k center problem and
we have seen its approximation ratio is 2. So, in today's class we will see local search
heuristics and greedy algorithms for designing approximation algorithms and for that we
will use the example of scheduling jobs in identical parallel machines. So, today's
problem is scheduling jobs on identical parallel machines. So, what is input? n jobs with
processing times p1 , p2 ,…, pn and we have m identical machines.

 ok we have m identical machines and what is the goal. So, we look at the completion
times of all the jobs and we want to minimize the maximum completion time. So, let C j

be the completion time of job j in a schedule and define Cmax=max j=1
n C j, this is the

maximum completion time ok. The goal or the goal is to compute a schedule which
minimizes Cmax. We assume non-preemptive scheduling that means, jobs once started
should be it should be allowed to run continuously till it finishes. All the jobs are
available at time 0, this is unlike the scheduling jobs on a single machine. So, all the jobs
are available time 0, there are no deadline for the jobs, but finish jobs as quickly as
possible. This Cmax is also called make span of a schedule.

 makespan of a schedule or maximum load of any machine. So, this problem can also be
viewed from load balancing point of view, we want to minimize the maximum load of
any machine. So, here we begin with local search based algorithm. Recall what is local
search based algorithm? The framework is we start with any arbitrary solution and
iteratively improve the solution by local moves till we can and once there is no local
move which can improve the solution we output the solution. So, here also we start with
an arbitrary schedule of this n jobs into m machines.

 Now, we look at the job we consider a job that finishes last. be a job that finishes last and
check is it possible to move that lth job to some machine ah which reduces the the
maximum load and this ah in particular suppose this is some machine M here this there

are various jobs are running and the last job is the lth job which finishes at time C l. Now,
it makes sense to move this job to some machine which finishes processing all its job
before the start of the lth job. So, if there is a machine which is idle that means, it has
finished all its assigned job at time. What is this time? This time is C l−pl, pl is the

processing time of l-th job at times earlier than C l−pl.

 we move if there is a machine M ’, we move job l to machine M ' ok. So, that is what we
do and you see by that we are between M and M prime we are if we just consider M and

M ' we are reducing the maximum load. It may still be possible that there is another

machine which who is occupied processing jobs till C l time. But, in that case also we are
making progress in the sense that we are reducing the number of machines with
maximum load with the number of machines who are busy till C l. So, what you observe
is that each local move can only possibly decrease the make span the current make span
and if the make span remains unchanged, then the number of machines with load with
maximum load decreases ok.

 So, now, we show that these are two factor approximation algorithm theorem. this local
search algorithm has an approximation factor of 2 proof. So, when does the algorithm
terminates? The algorithm terminates when there is no local So, in the algorithm
terminates. So, let C l be the make span of the schedule output by the algorithm ok. So,

we break the time into two parts one is from 0 to C l−pl.

 So, here are various machines and there is one machine which is which is occupied that
could be more than one machine which is occupied till time C l just pick any one job

which is which finishes at time C l and let pl be the processing time of that job. So, this is

from this is C l−pl. So, since no local move was available that is why the algorithm has

terminated. all the machines are busy in the time interval 0 to C l−pl ok. Now, what is

ALG? ALG is C l this is the make span of the schedule output by the algorithm this C l
you can write it as.

 So, define Sl to be C l−pl this time interval. So, this is Sl+ pl. Now, we will see two

lower bounds. So, since all machines was busy from 0 to Sl executing jobs in let us this

jobs called {J 1 ,…, J n}∖{J l}, l-th job because this l-th job J l is running here. We have

∑i∈[n] , i≠l
pi this is greater than equal to m×Sl and any algorithm in particular the

optimal schedule must take
∑i

pi
m

 time.

 So, let clearly opt≥
∑i

pi
m

. So, opt is greater than equal to the average time that any

machine with needs to run is this and this one and also opt is. greater than equal to any
jobs processing time in particular the processing term of l-th job pl. So, now, use this

here. So, from here we can write Sl≤
1
m∑i∈[n] , i≠l

pi.

 Now, from here let us come ALG=Sl+ pl≤
1
m
∑i∈[n] , i≠l

pi+ pl. Now, this is by rewriting

1
m
∑i∈[n]

pi+(1− 1
m

) pl, we add and subtract
pl
m

. Now, this sum is less than equal to opt

pl≤opt . So, this is less than equal to opt, this is less than equal to opt. So, we have this is

less than equal to opt+(1− 1
m

)opt which is (2− 1
m

)opt ok.

 So, this is better than two factor approximation algorithm. Now, we have one problem
here what is the running time of this algorithm? as described the algorithm runs in pseudo
polynomial time So, let us argue we start with a Cmax, we start with a with any makespan

and either in after every local move either the max span drops by at least 1 or if it does
not drop the number of machines which is maximally loaded which is highest which has
highest load by 1. So, we can say after n local moves after every n+1 local moves
makespan drops by at least 1. And the maximum possible make span to begin with could

be ∑ pi total processing times. So, the running time the number of iterations could be as

high as O(n⋅∑ pi).

 Here you see the running time depends on the value of the processing times, but the
input is at this numbers and this numbers are encoded in binary. So, to represent the value

say pi we need only log pi bits. So, this running time of O(n⋅∑ pi) this is not polynomial

of the input size because the input size is O(n⋅∑ log pi). So, this is not a polynomial

time algorithm as described these algorithms are called pseudo polynomial time
algorithms which is polynomial of the values of the numbers. So, we use a very simple
trick to convert it to a polynomial time algorithm.

 Here you see we are while deciding the local move we are not selecting which machine
to move. If there are multiple machines who are who is available in the time slot before
C l−pl I move to any machine. So, a greedy choice here is to move to a machine which is

least loaded. So, instead of moving the job to any machine which is available before
C l−pl, we move the job to the to the least busy machine to R it may not be unique least

busy machine.

 That means, if there are we move the jobs to the least busy machine if it is available
before C l−pl ok. So, whichever machine is available earliest we move that job to that

machine. Now, with this change we can show that this is a polynomial time algorithm.
So, here is a claim that each job is moved at most once. So, if I prove this then the
number of iterations is n at most n and hence the running time is big of n times in each
iteration can be executed in polynomial time.

 So, the overall running time is polynomial time. So, it is the proof by contradiction. So,
proof suppose not then there exists a job say j which is moved to M 1 and then M 2 ok. So,

we will use this is the fact that the make span cannot increase.

 So, let C1 be the make span of the schedule just before the job j is moved to M 1. At that

time at that time the load of M 1 be C1 this is just before the job M 1 moves to C1 moves

to machine M 1 the job j moves to machine M 1. So, after moving the load of machine M 1

becomes C1 plus p j ok. So, now the next time the job moves to moves from M 1 to M 2,

the load of M 2 just before j moves to M 2 be C2, but because it is moved because job j is

moved we have C2.

 less than C1. Recall a job is moved from one machine to another only if it is it the last

job when it is started that job is at that time another machine was available, but this
contradicts our fact that the make span is non decreasing. and the greedy choice this
contradicts the greedy choice ok. So, this shows that every job can move at most once
and hence it is a polynomial type algorithm ok. So, let us stop here.

