
Lecture 01 : Overview of NP-completeness and How to Tackle It.

Welcome to this first lecture of Approximation Algorithm Design course. Let me give a brief
overview of what we will study in this course. In today's world we know that we use
computer programs or apps for various decision making in daily life for example, finding
the route to take when we want to go from one city to another or maybe we want apps to
help us recommend which news or news item we would like to see or which items we want
to buy from various other applications like scheduling classes in a large institute like IITs
and so on. But it often turns out that most of the problems are hard. Now, what do you mean
by hard? So, let us formalize. So, broadly this area is called discrete optimization where the
goal is to maximize or minimize some function over discrete space ok.

Once we have a discrete optimization problem we want to have an efficient algorithm. So,
we want an efficient algorithm for discrete optimization problems. Now, it turns out that
for all problems do not admit an efficient algorithm. By efficient we mean run time is
polynomial in the input size. So, there is a complexity class called P is the set of problems
that admit ah polynomial time algorithm.

So, here we are slightly abusing the notation because when we define complexity classes
like P, NP we deal with decision version of the problem. So, the decision version of the
corresponding optimization problem which admits a polynomial time algorithm. That set of
problems is denoted by P and there is another famous class NP loosely speaking the set of
problems which has a polynomial time verifiable certificate for every yes instance. You see
in the definition of NP we are crucially using the fact that it is a decision version the answer
is either yes or no. It is typically believed we believe that P is not equal to NP.

What are some examples of ah problems which are in P? For example, in the 2SAT problem
we are given bunch of CNF clauses each CNF clause has exactly two literals, and we need to
find out whether there exists an assignment to this variables which satisfy all clauses. That
is 2SAT. Then we have shortest path with no negative weight cycles ok. Then we have
matching. Given a graph G compute the maximum matching, what is the matching? It is a set
of edges where no two edge share any end point. So, these are all problems and so on many
more these problems admit polynomial time algorithm and hence this problem belongs to P
the decision version. Similarly, examples of problems NP complete problems ok. So, NP
complete class is the set of problems which are hardest in the class NP of course, every
problem in P belongs to NP because P is a subset of NP.

The NP complete class is the set of all problems in NP which are hardest in the sense that if
any one of them admits any polynomial time algorithm, then every problem in NP admits a
polynomial time algorithm. So, it is typically believed that P≠NP . So, to show
P=NP it is enough to show that some NP-complete problem admits a polynomial time

algorithm. So, what are some examples? it is the 3 satisfiability problem where we are given
n Boolean variables and clauses m clauses each clause is an or of 3 literals and we need to

find out whether there exist an assignment to this Boolean variables which satisfy all these
clauses. Then we have longest path. Given a graph G and 2 vertices x and y, find the longest
path between x and y, then 3 dimensional matching and so on. So, it turns out that most of
the real world problems are NP complete. The examples of real world problems which are
not NP complete which belongs to P are few. So, in this course we will design tools to tackle
NP complete problems. Now, how do we typically tackle NP complete problems? way outs
from NP completeness. For any problem which is NP complete there are 3 things which you
cannot get simultaneously.

So, what are the 3 things? First one is finding an optimal solution, then running in
polynomial time. And 3 is works for all instances ok. So, need to leave at least one unless
P=NP ok, which we consider to be unlikely. So, what are the approaches typically? The

first approach is heuristics. So, can we have algorithms which work well in practice, but
have no probable guarantee.

Algorithms which seem to. work well in practice and take small amount of time to execute

ok. So, examples of such approaches are genetic algorithms, A∗ search etc.

The problem with this approach is that it does not come with a guarantee. So, for a new
instance it may happen that the algorithm either takes too long time or it does not give good
solution, close to optimal solution. So, drawback does not have provable guarantee on both
performance on both quality of solution and computation time. So, some heuristics may
have guarantee on one of them may be it transfers, but it may not always give good solution

for example, genetic algorithms or some heuristic like A∗ may guarantee quality of
solution it will find the optimal solution, but the runtime on some instances it may be
prohibitive. So, these are the is the first approach.

 The second approach is fixed parameter tractability. what is it? So, here you designate a
parameter call k and design an algorithm which runs in time some function of k times
polynomial in input size. So, the idea is if the parameter is small then your algorithm
effectively runs in polynomial time and design algorithm which runs in polynomial time and
always output a correct solution. The third approach which we will see in this course is
approximation algorithm. Here the goal is to design an algorithm which runs in polynomial
time and outputs are an approximately optimal solution with provable guarantee.

 So, here definition what is the definition of an approximation factor? This is the provable
guarantee approximation factor. So, an α approximation algorithm for a minimization
problem. Alternatively maximization is a polynomial time algorithm which outputs a
solution whose value is at most for minimization and for maximization at least respectively
alpha times the value of an optimal solution. So, for minimization problem α will be
greater than 1 and for maximization problem α will be less than 1. α is greater than
equal to 1 and for maximization problem α is less than equal to 1 ok.

 Now and as α goes towards 1, we have the better solution it is more close to optimal.
So, how close we can go? So, the one target is what is called to have a polynomial time
approximation scheme. petas for short. So, what is a PTAS? It is a family of algorithms
Aϵ for every ϵ greater than 0, where Aϵ outputs or 1+ϵ approximate

solution for minimization problems and 1−ϵ approximate solution for maximization

problems. and runs in time nf (ϵ) .

 So, for every constant ϵ the runtime is polynomial time and this is the fixed this is the
polynomial time approximation scheme or PTAS for short. Now, there are some problems
which admits PTAS and there is another thing is called FPTAS fully polynomial time
approximation scheme. It is also a family of algorithms Aϵ ϵ greater than 0 and it is a
1±ϵ approximation algorithm depending on whether it is a maximization problem or

minimization problem. Approximate solution in time polynomial in input size and
1
ϵ ok.

So, examples of problems in peters for example, Euclidean travelling salesman problem
admits a PTAS.

 On the other hand Knapsack problem admits an FPTAS. So, we will continue our study of
approximation algorithm in the next class. So, let us stop

