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 Hello everyone, welcome to this course on Artificial Intelligence for Economics. I am 
Adway Mitra, an Assistant Professor at Indian Institute of Technology, Kharagpur. Today 
we are on the 9th lecture of this course, like in the last lecture we discussed about the  
heuristic search algorithms in graph and the A∗ algorithm. Now in today's lecture 9, we 
will  carry forward some of those concepts.  So,  specifically we instead of just  that  is 
heuristic search we will extend that to multi objective heuristic search and we will also 
discuss the very important concept of game tree. So, that topics which we are going to 
discuss  today  we  will  start  with  that  I  will  introduce  what  is  meant  by  game  tree.

 And like how we can like find optimal paths in a game tree or optimal sequence of 
strategies  game tree, then we will discuss the algorithms of alpha beta pruning and we 
will also extend like this the game tree as well as the this search techniques to the multi  
objective case. Now, let us start with an example. So, let us consider the game of chess.  
So, chess is a game which is played sequentially that is there are two players who play in 
turn  in  like  by  taking  turns.

 and their two their aims are exactly the opposite that is there is an initial configuration 
from which I like let us say typically the player who is playing with the white pieces they  
make the first move then the player who is playing with the black they make the next 
move and so on and so forth. So, that is the usual sequence of steps. when the first player  
one who is playing with white pieces their aim is something and the basically their aim is 
to win the game and similarly the player who is playing black their aim is also to win the 
game which means that the their two objectives are exactly opposite of each other that 
means if you consider a particular configuration of the chess board one which is very 
good for the white is automatically is quite bad for the black and the reverse also. So, that 
means, that as we are try like as they play in turns. So, we like we try to change the 
configuration of the chess board or the system in general to like to a configuration which 
is favorable to us and unfavorable to the other person by opponent player also does the 
same  thing  when  they  get  their  turn.



 So, now why is this game hard? This game is hard because like when I am taking a move 
I want to understand whether this move will take me to a like a desirable state for me a 
goal state for me a state where I win or it will not take me. So, the usually the any move 
which I take it like it is not guaranteed to take me to either the victory or defeat. It all  
depends on what happens in the subsequent steps specifically what moves my opponent 
gives and what moves I give in the next step. So, like like ideally I would think that if I  
make me this move. then most likely my opponent will move that make that move and in 
which case I will make that move and in response to that my opponent will make such 
and such move and I will have to see it several times into the future and see whether I am 
reaching a goal state or not what is the goal state in this case a state where I win the game 
of chess But in of course, like in chess is such a complex game with so many different 
possibilities it is very difficult or impossible for a human brain to take to think of all 
possible scenarios that is what will happen if I make this move now what response my 
object  my  opponent  can  give  after  this  what  can  I  do.

 So, like there are so many possibilities at every step I usually will not be able to think of  
so much. like typically a human it is almost impossible for a human being to think more 
than two three steps ahead. In fact, even then we may make mistake because we may 
overlook some opportunities right. The similar situation happens in a game of tic tac toe 
also except that the in this case the it is much easier because the possibilities are much 
limited. that is there are only 92 where we can which we can fill up and as we as the game 
proceeds  the  number  of  squares  left  that  also  decreases.

 So, like the number of options in front of us becomes much smaller. So, we can it is 
easier for us to evaluate it. So, now this concept we can formulate again in the like as a  
graph where each graph indicates a state of the system. So, we have a starting state let us  
say the state from which the p1 moves after that we like. So, like the only thing is that in 
this  case  the  graph  is  arranged  in  the  form  of  a  tree.

 So, a tree like now what is a tree we all know a tree is a graph which has no cycles, but  
like specifically the this tree is arranged in the like in clear layers like this. that is the we 
have a goal state sorry a start state which is the starting of the game that represents when 
the first player p1 they make the move. Now, let us say that three choices are available in 
front of them when they make the first move. So, those three choices are represent I mean 
or the rather the outcome of those three choices are represented by these three variables. 
Now so when the first player makes a move they start with here and they may come to 
any  of  these  like  these  things  let  us  say  it  comes  to  this  node.

 Now when it comes to this node this is the state of the system then the second player p2 



it is their turn to move. So, now they will choose like they will have these two options in 
front of them. So, they will move to this one and so on and so forth this will go on until  
we reach the situation where no further moves are possible. So, like we reach the end of  
the game and then we see who has won and like and what was the cost spell like acquired 
in reaching that solution. So, now at any given point when I am starting initially like how 
will  these  are  the  three  options  available  in  front  of  me.

 So, how will I choose where to go. So, the thing is at any give like every step just like we 
are talking about heuristic function earlier. What is heuristic function? Heuristic function 
is a estimate of like the distance of the goal state from that state. So, like in this case also 
for I am currently at the starting point. I will move to one I have three I can move to these 
three states I  will  move to that  state which appears to be the closest  to the gold ok.

 So, like I do not know the actual distance to the gold. So, again I will have to use apply a 
heuristic function. So, let us consider a heuristic function like this. at each of these nodes 
I have again once again I have put some heuristic values. Now, the aim is I like that is  
when  I  am  trying  to  move  the  I  am  player  p1.

 So, I my aim is to find the shortest path to the  to the to a goal node. So, I will now these  
heuristic functions they indicate the distances of these options. So, I like looking at these 
heuristic functions I think that if I come to this one I will probably be the closest to the  
goal node because this has the value heuristic value of 6 while the other two have much 
higher 9 and 7. So, I think it is best for me to come here. Now, player  p2 will move.

 Now, when player p2 moves they also have access to the heuristic function. Now, player 
p2's objective is exact opposite of mine. I that is if I my aim is to reach the goal state my 

the player p2's aim is to make sure that I am not able to reach my goal state. So, they will  
try to take the system to a state which is as far away from the goal state as possible. So,  
now so in my aim is to minimize the heuristic function or to choose that configuration for  
which the heuristic function is low in for my opponent the aim is just opposite it wants to 
or they want to change the system to such a state for which the heuristic function is the  
highest because that is disadvantageous for me and by extension advantageous to him or 
her.

 So, like in this case assuming that I have come here there are two possible my adversary 
sees that there are two possible choices in front of them either they come here for which  
the heuristic is 2 or they go there for which the heuristic is 8. So, sees they want to 
maximize the heuristic. So, they will obviously take me here. Now, as we are doing this 
that is from here to here I as I moved the made this step I may have incurred a loss or I 
may have incurred a cost which is associated with these edges. So, I take care of that is I 



the price which I paid here is 2 and similarly when my adversary took the system from 6 
to  8  it  also  paid  a  cost  which  is  7.

 So, right now my objective I mean my adversary has taken the system to a situation 
which is disadvantageous for me, but in the process they have also paid a high cost. Now 
the same thing let us see it in a like a bit more elaborately. So, what do I do? So, like I  
mean the tree which we are like forming in this case this is what is known as the game 
tree. So, what happens in a game tree at like at every stage like the game tree is basically  
arranged into stages like this one stage is for the player 1 the other stage is for player 2.  
Of course, we can have more than two players also in which case like we will have let us  
say  p1 , p2 , p3 , p1 , p2 , p3 this  is  how  the  stages  we  are  going  to  be  organized.

 Now each at  each of these stage there are these possibilities and each possibility is 
associated with a heuristic value which indicates how good or how bad that possibility is 
for a particular player. Now it like the we follow a convention. that for player p1 the aim 

is  to  minimize  the  heuristic  function  and  for  player  p2 the  aim  is  to  maximize  the 

heuristic function ok. So, at every step the p1 it tries to reach a vertex with the least value 

of heuristic function and when p2 gets to turn gets to move they try to reach a vertex with 
the maximum value of the heuristic function. Now, in this case this process goes on till 
we  reach  a  leaf  node  that  is  from  which  no  further  transitions  are  possible.

 And then when such a situation is reached then every leaf node has a value function 
associated with it which indicates whether it is good for the player  p1 or good for the 

player p2. So, as already mentioned player p like the low value of means good for player 
p1. So, and high value means good for player  p2. So, these are the goal the leaf nodes 

from which it is no longer possible to move. So, I like if I reach any of these nodes I will 
try to understand whether like p1 can be considered to have won the game or p2 will have 
won  the  game.

 So, like these are the values associated with the goals. So, I mean these values 4, 8, 0, 1  
etcetera I have just put them. So, it suggests that these two nodes 0 or 1 these two goal 
node leaf nodes. they are good for player  p1 whose aim is to minimize and these two 

nodes 4 and 8 they are good for the player p2 whose aim is to maximize. In fact, we can 

also say that like 0 is best for player  p1, 8 is best for player  p2, 1 and 4 you can say 
represent  draw  kind  of  conditions.

 So, now like as we mentioning earlier. So, like player p1 moved and brought it to this 

step after that player p2 again saw that by checking the heuristic functions here of these 

internal nodes brought the system to this state. Then again it is turn for p1 to move. So, p1 



sees that there are two options in front of them one of them has the heuristic value 6 the  
other has heuristic value 1. So, since they want to minimize they come here and in the 
process  they  incur  a  cost  of  9.

 Again p2 moves p2 sees there are two options in front of them like one is 8 the other is 1. 
So, they choose 8 and they come here in the process they incur a cost of 5. Now this 8 
this turns out to be a goal state or a leaf node from here no further movement is possible 
and this 8 is considered favorable to player p2. So, we say that the  Player p2 has won, but 

at a higher price. Player p1 has played a price of 11, player p2 has placed a price of 12 ok.

 So, now the we the we may ask that ok. So, both player  p1 and player  p2 they made 
some decisions.  Now,  were  they necessarily  the  right  decision?  That  is  if  instead of 
choosing so player p1 to move to this node based on this heuristic function which could 
have been wrong also heuristic  function is  just  an estimate.  So,  it  is  possible that  if  
instead of this being 7 if instead this had been 3 that then player  p1 would have come 

here. So, maybe in that player p1 by coming here ended up losing the game maybe if they 
had  come  here  instead  then  maybe  they  could  have  done  better.

 So, who knows. So, to know that we can go for the optimal path identification. So, for 
optimal path identification that is the our task is basically to estimate the value of these 
heuristic functions. Earlier we had just put this randomly. Now, the question is can we 
actually  calculate  them so that  finding the  optimal  path  becomes easier  for  both  the 
things.  So,  we  follow  this  algorithm  called  the  minimax.

 So, whenever we are considering the level in which like p2 moves then we choose the 
maximum value and whenever we are considering the heuristic functions at the level 
where p1 moves we are considering the minimum value. Why? Because see like if like 

we suppose we have come to this node and p2 is going to move  then obviously p2 will 

come to here and he will never go here why because this is like a desired state for p2 and 

this is not a desired state for p2. So, from p2's perspective when they come here it does 
not make any sense to go this side at all. So, they will always go to this side. So, like we  
can  say  that  if  it  is  here  then  the  objective  I  mean  the  heuristic  value  for  p2 is  8.

 like in this case it is I mean coming here is as good as coming here for p2 the same goes 
for this node also it is the two possibilities are 8 and 1. So, if they come to this node 
obviously, they will come here they will never go there. So, it like the value I mean you 
can say that the heuristic of this function is 8 it means that if the if p2 is able to reach this 
state somehow then they are guaranteed to get 8. on on the say on the other hand if you 
consider this step say for example, here like the p1 has to make a move. Now, p1 that is if 



p1 is here then they either they can come to this state whose value is 0 or they can go to 

this  state  whose  value  is  8.

 Now, p1 of course, wants to minimize. So, of course, they will choose the value come to 

this place of 0. So, like we can say that we like if p1 comes here, it is guaranteed that they 

will come to this that that is the they will get the valuation of 0. So, with respect to p1, I 
choose the minimum of these two values and I place the value of 0 as the heuristic for 
this node. Similarly, for this node also. So, like but in this case like only one possibility is 
there  that  is  8.

 So, I like for both of these two nodes they get the value of 8. In fact, for this node there 
are two possibilities both of them have the value of 8. So, this node is also going to have 
the value of 8. that means, that if I if player p1 reaches in this node no matter what they 
do they will like reach an unfavorable situation that is where the final result is going to be 
8 which is not a favorable for them. This way we keep on moving upward that is like 
each leaf node already has a utility measure use it to update the heuristic values of the 
remaining  vertices.

 Consider each pre-leaf vertex if p2 is going to make the move they will surely move to 
the leaf with the higher value. So, you copy the same value to the pre-leaf vertex and in  
for  p1 in the previous round  p1 will surely move to the pre-leaf node with the lower 
value. So, accordingly you update the estimates as we did here. So, for like so this is why 
it is called a minimax algorithm for optimal path finding. So, at the when p2 is moving 

we choose the maximum that is like in the in the in the level where p2 has to move the 
heuristic  function  is  estimated  by  calculating  the  maximum  of  the   of  of  their  the 
maximum  value  of  their  children  which  in  this  case  are  the  leaf  nodes.

 Similarly, for those layers in which  p1 is going to be is going to make the move the 
heuristic function is calculated by considering the minimum value of the their children 
and in so on and so forth. So, this is the way you calculate the in the heuristic function for 
the entire tree. Now, what is the heuristic the optimal path? So, in the original like if you 
consider the starting point its valuation is 0. So, p1 is making a move. So, like the these 
are  the  three  possibilities  in  front  of  them  8,  8  and  0.

 So, obviously, they will move to 0. So, now p2 it has has to make a move, but it has two 
possibilities in front of him both of them have the value of 0. So, like since both of them 
seem to be equally bad for the player p2 they may choose the one which cost less. So, one 

cost 6 the other cost 8. So, they come to this one. now again p1 has to move like there are 
two  possibilities  here  either  8  or  0.



 So,  p1 obviously will again choose the 0. So, they are like so I am basically blindly 
trusting my heuristic function now earlier I like I when I the heuristic function had been 
set  So, randomly I did not I mean by trusting the heuristic function could have resulted in 
me going to a like a suboptimal solution or losing the game in other words, but in this 
case  I  have  actually  chosen  the  I  have  computed  the  correct  values  of  the  heuristic 
functions. So, now if I follow them I will reach what is the optimal result for me. So, I 
reach so player p1 reaches this which is a leaf node and with the value of 0. So, player p1 

thinks that they have won the match. So, note that player  p2 they never really got any 

chance, player  p1 took the first move and at that time itself it was clear that they are 

going  to  win  the  game,  player  p2 could  not  have  done  anything  differently.

 Now, so the p1 we can say they had the first movers advantage, but if  p2 had the first 
movers advantage then like it can be like you can see they would have taken a different 
path altogether.  And they would have reached this goal state which has a value of 4 
which is like you can say an intermediate value which is neither too good for p1 not too 

good for p2. So, like this is what is known as the game tree. Now, when I am calculating 
this game or this applying this minimax algorithm to find the optimal like the optimal 
heuristic values for a game tree. I can actually like make this process bit more efficient  
that  is  I  may  not  always  have   evaluate  the  entire  game  tree  to  calculate  all  the  
intermediate  values.

 So, it turns out that in some situations some parts of it become irrelevant that is if I like I  
will let us look at this example. So, I am calculating from the leaf nodes upwards. So, I 
see 5. So, like I want to like copy that value to the previous node here 5, but that also 
depends on this leaf node. So, but if the value of this is 6 which is lower than which is 
higher  than  5,  but  my  aim  is  in  this  layer  is  minimize.

 So, I will not consider this 6 at all and I will stick to 5. now here again like I have found 
this value of seven and I copy that value seven in this intermediate node but then I see 
that it depends on these two leaf nodes also so here I consider this leaf node four and I 
place it here now it is already four Now if I want to place the value of 5 now when I see 
the value of 5 here then I do not that is I do not need to consider it because I have already 
found a value which is less than 5. So, if this 5 if it had children I would not need to 
consider this part of the tree at all because I have like already that is I know that. like the 
values which are below this they will not be any less than 5 because if this is anyway a 
max layer right. So, in that case so that is I I can just ignore this part all together and I can 
focus  on  4.

 The similar situation happens here say like here from this node onwards I have come to  



this node I have copied the value here this does not have any other children. So, the same 
value is propagated again here  and then and this also has no other children so the this 
value is 5 is copied here now I  want to see what about here now I so like I have to 
calculate this value that is I  have to calculate the max of sorry the mean of 5 and this 
value but this value I  have not yet  calculated So, now I compare the sub tree this I 
compare this sub tree and I look at its leaves they have the values of 9, 8 and 6 all of 
which are greater than 5. So, that means, that like after applying the mean and max to this  
whatever value I get it will be either 9, 8 or 6 in any case it is going to be less than 5. So, 
I do not really need to calculate the value of any of these intermediate nodes I can just  
prune of this thing. So, this is known as the like alpha pruning where you just prune the 
sub  trees  with  high  values.

 That is you have found a sub tree where you are convinced that its value will always be 
higher than the value which you currently have, but it is a mean node. So, mean node  
means you are trying to minimize, but you have found a sub tree whose value will always 
be higher than what you have found. So, it is not necessary to evaluate it. So, you prune 
that tree. Similarly, similar situation can arise in the max layer also you may have found a 
sub tree  whose  value  is  obviously  going to  be  lower  than  what  you currently  have.

 So, you do not have to evaluate that sub tree. So, you prune that sub tree. So, that is  
called as beta pruning where you prune the sub trees with low values. Now, we have 
already we have several times we have discussed the concept of heuristic search and on 
like we have considered the A∗ algorithm as well as the game tree. Now, it may happen 
that the cost function is is is vector valued that is what is known as the multi objective 
heuristic search that is as you are moving like when we are considering the shortest path 
like we had only one objective that is to like the total path length, but suppose the path  
length  has  like  multiple  criteria  associated  with  it.

 So, the so in other words the cost path cost is a vector. So, when we are considering a  
heuristic function h ( x ) though or the like f ( x ) g ( x ) etcetera those also then will have to be 
vector valued to like make sure you have the compatibility with the h cost. So, we have to 
change the  A∗ algorithm accordingly. So, remember that when we are considering the 

A∗ algorithm one crucial point was at any given point when we are trying to move from 

the current state to the next state we were comparing the f values of the open vertices and  
whichever vertex had the least f value we move to that one. But now when we now that 
we  are  dealing  with  vectors  identifying  the  smallest  vector  is  that  is  often  difficult 
because f is now vector valued. So, now it may happen that there are 3 nodes for the y1 

y2 and  y3 for  f ( y1 ) is  348  f ( y2 ) is  257  and  f ( y3 ) is  458.

 Now, if you see these 3 4 8 and 2 5 7 these two they form a non dominating set that is  



like 3 is of course, that is 2 is of course, better than 3, but then 4 is better than 5 and 7 is  
better than 8. So, with respect to some of the vector dimensions y2 has a smaller value of 

f and for some other dimensions  y1 has a smaller value of f.  So, it  is not very clear 

between y1 and y2 which I should choose, but if you see y3 it is like in all the dimensions 
it is like at least its f value is at least as large as the other two. So, f y so we can say that  
y1 and y2 they both of them dominate y3. So, y3 I can ignore for now, but y among y1 

and  y2 there  is  no  obvious  winner.

 So, I may like I now I cannot go to both y1 and y2 I cannot visit both of these nodes. So, 
I will have to choose one of them, but I cannot ignore the other also I cannot close the 
that vertex because I mean the vertex x from which I have got these neighbors because  I  
that is like I have not been able to rule out the y2 it is possible that y2 will become useful 

for me later. So, that is it I cannot place it in the close list as I did in the original  A∗ 

algorithm. So, so and finally, the like A∗ algorithm is guaranteed to find a path which is 
like I mean a path to the goal if it is like the if the I mean a shortest path to the goal if the 
if the heuristic function is admissible. In this case we cannot say that we will find the  
shortest path to the goal, but it is guaranteed that we will find a path to the goal which is 
non-dominated.

 So, like like an example you can see here like the where the  A∗ algorithm is applied 
here for the lack of time I am not going to go into the details of this. So, but I will just  
show you the first two steps. So, we start at this node s. So, I have these two possibilities  
in front of me node n1 and node n2. So, for n1 you will see that it has like so I am I am 
trying  to  calculate  the  heuristic  function  at  each  of  these.

 So, at like if you remember at the time when we discuss A∗ algorithm we said that the 
heuristic function at any for any node can be simply the minimum value of its or the 
minimum cost of its neighbors. So, now this one it has two neighbors 3 and 4, one of 
them has the path cost of 3 2, the other has the path cost of 2 3. So, 3 2 and 2 3 however, I 
am not able to compare. So, they are non dominating set. So, I consider like both of them 
that  is  like  as  the  as  the  choice  of  their  heuristic.

 The heuristic in this case is not a single value, but a set of values. So, this is what sets the 
a multi objective heuristic search different from the original heuristic search. In case of n2 

however, there is no such problem. In n2 has two neighbors 4 and 5, one for one the path 
cost is 3 2, the other also has path cost of 3 2. So, either way the heuristic value of the 
heuristic is 3 2. Now, if you consider  this n like n3 or let us consider n4 it has 2 neighbors 
one  of  them  is  1  3  the  other  one  is  1  1.



 So, 1 1 however dominates 1 3. So, I consider the heuristic value of n4 as just 1 1 and so 
on and so forth. So, this way we consider construct the heuristic function. Now, the same 

A∗ algorithm we apply using these kinds of heuristic using these values of the heuristic. I 

start  at  n  the  next  node  is  n1.

 So, the g the cost for reaching n1 is of course, 2 comma 3. Now, like at n1 the heuristic is 

like we have a set of heuristic values 2 3 and 3 2. Now, from n1 if I go to 3 the in that 
case the value that is if I am choosing this value in that case the value of f will become 
the current value of g which is 2 3 plus the heuristic which is 3 2. So, 2 3 plus 3 2 is 5 5.  
right.

 On the other hand I could also have chosen this as the value of my heuristic. So, 2 3 and 
3 2 are both possible values of heuristic. If I say 2 3 then the value of f would be 4 6, but 
if I say 3 2 then the value of the heuristic would be 5 5. So, 4 6 and 5 5 both are possible  
values of f that is for n1. for n2 however like the path cost that is the g is 4 2 now I have 

already identified that the heuristic is 3 2 so the f value of n2 is 4 2 plus 3 2 which is 7 4 

so like I have got n1 and n2 so now like I may like you can see once again that these are 
non dominated sets So, like there is no obvious it is not clear to me which one I should 
expand.

 So, let us say I decide I will expand n1. So, again like when I expand n1 I encounter n3 

and n4. So, I like add them to the open list n2 is still there. now again I compare their f 

values and this time  I decide to expand  n4 now you will  see that  n4 however called 

dominates n3 even though it may not sorry I see that n both n4 and n2 they dominate n3 so 

now between them I decide to expand n2 first So, I expand n2 and n 5 gets added and now 

I decide to expand n4 and so on and so forth. So, this is how the multi objective heuristic 
works.

 Similar situation I can use in case of multi heuristic objective game trees also. So, let us 
say that I am at a like I am trying to maximize like that is I am player p2 who is trying 
who wants to maximize. Now, there are three like the options available in front of them 
11 5 9 4 and 7 3. So, 11 5 of course, dominates 9 4 and 7 3. So, I just choose 11 5. If I am 
considering the player  p1 who wants to minimize then the like we see that  from the 
perspective  of  minimization  7  3  dominates.

 So, like for the player p1 the obvious choice is to choose 7 3. So, the like the game tree 
accordingly can also be like modified in this way some of the and like as happened earlier 
some of the heuristic values they will not be single vectors, but actually collections of 
vectors and it will this will happen if there is a non dominated non dominating situation 



available like 11 5 and 5 7 you see that they these are non dominating solutions with 
respect to minimization. So, both of them are stored at possible heuristic values. So, so 
when do we where do we like encounter these situations in economics or why are these 
relevant for economics. So, game trees can represent many strategic interactions among 
various  stakeholders  in  any  market  scenarios  let  us  say  competing  companies  or 
competing suppliers and consumers.  So,  each of them can be considered as different 
players each of them playing with certain objectives like which are selfish to themselves 
and  they  make  moves  turn  wise.

 So, like one company for one company making a move may be lowering the prices of 
something for another company it may mean raising the prices of something and so on 
and so  forth.  So,  the  whole  situation  is  like  the  competition  the  market  competition 
between the players is modeled as game tree. And like in case of behavioral economics 
also game trees allows the economics to predict how the rational agents are going to 
behave in various strategic situations such as like the competition or bargaining and or 
negotiations and so on and so forth. In case of macroeconomic policy making also like 
which we have the concept of multi objective optimization which we just saw. So, like 
for  example,  bank  has  to  make  a  monetary  policy  and  it  has  to  keep  changing  its 
monetary policy like to and while doing so it has to like it has so many objectives to 
consider  inflation,  unemployment  and  so  on  and  so  forth.

 So, with this we come to the end of this lecture. In the coming lecture which is lecture  
10, we will start again shift tracks and we will start on data driven models or which we 
can call as machine learning models and how they can be like useful in various tasks 
related to economics. So, we will start with unsupervised learning. So, till then all of you 
please take care and stay well. See you soon. Bye.


