
Artificial Intelligence for Economics

Prof. Adway Mitra

Artificial Intelligence

Indian Institute of Technology Kharagpur

Week – 02

Lecture - 09

Lecture 09 : Multi-objective Heuristic Search and Game Trees

 Hello everyone, welcome to this course on Artificial Intelligence for Economics. I am
Adway Mitra, an Assistant Professor at Indian Institute of Technology, Kharagpur. Today
we are on the 9th lecture of this course, like in the last lecture we discussed about the
heuristic search algorithms in graph and the A∗ algorithm. Now in today's lecture 9, we
will carry forward some of those concepts. So, specifically we instead of just that is
heuristic search we will extend that to multi objective heuristic search and we will also
discuss the very important concept of game tree. So, that topics which we are going to
discuss today we will start with that I will introduce what is meant by game tree.

 And like how we can like find optimal paths in a game tree or optimal sequence of
strategies game tree, then we will discuss the algorithms of alpha beta pruning and we
will also extend like this the game tree as well as the this search techniques to the multi
objective case. Now, let us start with an example. So, let us consider the game of chess.
So, chess is a game which is played sequentially that is there are two players who play in
turn in like by taking turns.

 and their two their aims are exactly the opposite that is there is an initial configuration
from which I like let us say typically the player who is playing with the white pieces they
make the first move then the player who is playing with the black they make the next
move and so on and so forth. So, that is the usual sequence of steps. when the first player
one who is playing with white pieces their aim is something and the basically their aim is
to win the game and similarly the player who is playing black their aim is also to win the
game which means that the their two objectives are exactly opposite of each other that
means if you consider a particular configuration of the chess board one which is very
good for the white is automatically is quite bad for the black and the reverse also. So, that
means, that as we are try like as they play in turns. So, we like we try to change the
configuration of the chess board or the system in general to like to a configuration which
is favorable to us and unfavorable to the other person by opponent player also does the
same thing when they get their turn.

 So, now why is this game hard? This game is hard because like when I am taking a move
I want to understand whether this move will take me to a like a desirable state for me a
goal state for me a state where I win or it will not take me. So, the usually the any move
which I take it like it is not guaranteed to take me to either the victory or defeat. It all
depends on what happens in the subsequent steps specifically what moves my opponent
gives and what moves I give in the next step. So, like like ideally I would think that if I
make me this move. then most likely my opponent will move that make that move and in
which case I will make that move and in response to that my opponent will make such
and such move and I will have to see it several times into the future and see whether I am
reaching a goal state or not what is the goal state in this case a state where I win the game
of chess But in of course, like in chess is such a complex game with so many different
possibilities it is very difficult or impossible for a human brain to take to think of all
possible scenarios that is what will happen if I make this move now what response my
object my opponent can give after this what can I do.

 So, like there are so many possibilities at every step I usually will not be able to think of
so much. like typically a human it is almost impossible for a human being to think more
than two three steps ahead. In fact, even then we may make mistake because we may
overlook some opportunities right. The similar situation happens in a game of tic tac toe
also except that the in this case the it is much easier because the possibilities are much
limited. that is there are only 92 where we can which we can fill up and as we as the game
proceeds the number of squares left that also decreases.

 So, like the number of options in front of us becomes much smaller. So, we can it is
easier for us to evaluate it. So, now this concept we can formulate again in the like as a
graph where each graph indicates a state of the system. So, we have a starting state let us
say the state from which the p1 moves after that we like. So, like the only thing is that in
this case the graph is arranged in the form of a tree.

 So, a tree like now what is a tree we all know a tree is a graph which has no cycles, but
like specifically the this tree is arranged in the like in clear layers like this. that is the we
have a goal state sorry a start state which is the starting of the game that represents when
the first player p1 they make the move. Now, let us say that three choices are available in
front of them when they make the first move. So, those three choices are represent I mean
or the rather the outcome of those three choices are represented by these three variables.
Now so when the first player makes a move they start with here and they may come to
any of these like these things let us say it comes to this node.

 Now when it comes to this node this is the state of the system then the second player p2

it is their turn to move. So, now they will choose like they will have these two options in
front of them. So, they will move to this one and so on and so forth this will go on until
we reach the situation where no further moves are possible. So, like we reach the end of
the game and then we see who has won and like and what was the cost spell like acquired
in reaching that solution. So, now at any given point when I am starting initially like how
will these are the three options available in front of me.

 So, how will I choose where to go. So, the thing is at any give like every step just like we
are talking about heuristic function earlier. What is heuristic function? Heuristic function
is a estimate of like the distance of the goal state from that state. So, like in this case also
for I am currently at the starting point. I will move to one I have three I can move to these
three states I will move to that state which appears to be the closest to the gold ok.

 So, like I do not know the actual distance to the gold. So, again I will have to use apply a
heuristic function. So, let us consider a heuristic function like this. at each of these nodes
I have again once again I have put some heuristic values. Now, the aim is I like that is
when I am trying to move the I am player p1.

 So, I my aim is to find the shortest path to the to the to a goal node. So, I will now these
heuristic functions they indicate the distances of these options. So, I like looking at these
heuristic functions I think that if I come to this one I will probably be the closest to the
goal node because this has the value heuristic value of 6 while the other two have much
higher 9 and 7. So, I think it is best for me to come here. Now, player p2 will move.

 Now, when player p2 moves they also have access to the heuristic function. Now, player
p2's objective is exact opposite of mine. I that is if I my aim is to reach the goal state my

the player p2's aim is to make sure that I am not able to reach my goal state. So, they will
try to take the system to a state which is as far away from the goal state as possible. So,
now so in my aim is to minimize the heuristic function or to choose that configuration for
which the heuristic function is low in for my opponent the aim is just opposite it wants to
or they want to change the system to such a state for which the heuristic function is the
highest because that is disadvantageous for me and by extension advantageous to him or
her.

 So, like in this case assuming that I have come here there are two possible my adversary
sees that there are two possible choices in front of them either they come here for which
the heuristic is 2 or they go there for which the heuristic is 8. So, sees they want to
maximize the heuristic. So, they will obviously take me here. Now, as we are doing this
that is from here to here I as I moved the made this step I may have incurred a loss or I
may have incurred a cost which is associated with these edges. So, I take care of that is I

the price which I paid here is 2 and similarly when my adversary took the system from 6
to 8 it also paid a cost which is 7.

 So, right now my objective I mean my adversary has taken the system to a situation
which is disadvantageous for me, but in the process they have also paid a high cost. Now
the same thing let us see it in a like a bit more elaborately. So, what do I do? So, like I
mean the tree which we are like forming in this case this is what is known as the game
tree. So, what happens in a game tree at like at every stage like the game tree is basically
arranged into stages like this one stage is for the player 1 the other stage is for player 2.
Of course, we can have more than two players also in which case like we will have let us
say p1 , p2 , p3 , p1 , p2 , p3 this is how the stages we are going to be organized.

 Now each at each of these stage there are these possibilities and each possibility is
associated with a heuristic value which indicates how good or how bad that possibility is
for a particular player. Now it like the we follow a convention. that for player p1 the aim

is to minimize the heuristic function and for player p2 the aim is to maximize the

heuristic function ok. So, at every step the p1 it tries to reach a vertex with the least value

of heuristic function and when p2 gets to turn gets to move they try to reach a vertex with
the maximum value of the heuristic function. Now, in this case this process goes on till
we reach a leaf node that is from which no further transitions are possible.

 And then when such a situation is reached then every leaf node has a value function
associated with it which indicates whether it is good for the player p1 or good for the

player p2. So, as already mentioned player p like the low value of means good for player
p1. So, and high value means good for player p2. So, these are the goal the leaf nodes

from which it is no longer possible to move. So, I like if I reach any of these nodes I will
try to understand whether like p1 can be considered to have won the game or p2 will have
won the game.

 So, like these are the values associated with the goals. So, I mean these values 4, 8, 0, 1
etcetera I have just put them. So, it suggests that these two nodes 0 or 1 these two goal
node leaf nodes. they are good for player p1 whose aim is to minimize and these two

nodes 4 and 8 they are good for the player p2 whose aim is to maximize. In fact, we can

also say that like 0 is best for player p1, 8 is best for player p2, 1 and 4 you can say
represent draw kind of conditions.

 So, now like as we mentioning earlier. So, like player p1 moved and brought it to this

step after that player p2 again saw that by checking the heuristic functions here of these

internal nodes brought the system to this state. Then again it is turn for p1 to move. So, p1

sees that there are two options in front of them one of them has the heuristic value 6 the
other has heuristic value 1. So, since they want to minimize they come here and in the
process they incur a cost of 9.

 Again p2 moves p2 sees there are two options in front of them like one is 8 the other is 1.
So, they choose 8 and they come here in the process they incur a cost of 5. Now this 8
this turns out to be a goal state or a leaf node from here no further movement is possible
and this 8 is considered favorable to player p2. So, we say that the Player p2 has won, but

at a higher price. Player p1 has played a price of 11, player p2 has placed a price of 12 ok.

 So, now the we the we may ask that ok. So, both player p1 and player p2 they made
some decisions. Now, were they necessarily the right decision? That is if instead of
choosing so player p1 to move to this node based on this heuristic function which could
have been wrong also heuristic function is just an estimate. So, it is possible that if
instead of this being 7 if instead this had been 3 that then player p1 would have come

here. So, maybe in that player p1 by coming here ended up losing the game maybe if they
had come here instead then maybe they could have done better.

 So, who knows. So, to know that we can go for the optimal path identification. So, for
optimal path identification that is the our task is basically to estimate the value of these
heuristic functions. Earlier we had just put this randomly. Now, the question is can we
actually calculate them so that finding the optimal path becomes easier for both the
things. So, we follow this algorithm called the minimax.

 So, whenever we are considering the level in which like p2 moves then we choose the
maximum value and whenever we are considering the heuristic functions at the level
where p1 moves we are considering the minimum value. Why? Because see like if like

we suppose we have come to this node and p2 is going to move then obviously p2 will

come to here and he will never go here why because this is like a desired state for p2 and

this is not a desired state for p2. So, from p2's perspective when they come here it does
not make any sense to go this side at all. So, they will always go to this side. So, like we
can say that if it is here then the objective I mean the heuristic value for p2 is 8.

 like in this case it is I mean coming here is as good as coming here for p2 the same goes
for this node also it is the two possibilities are 8 and 1. So, if they come to this node
obviously, they will come here they will never go there. So, it like the value I mean you
can say that the heuristic of this function is 8 it means that if the if p2 is able to reach this
state somehow then they are guaranteed to get 8. on on the say on the other hand if you
consider this step say for example, here like the p1 has to make a move. Now, p1 that is if

p1 is here then they either they can come to this state whose value is 0 or they can go to

this state whose value is 8.

 Now, p1 of course, wants to minimize. So, of course, they will choose the value come to

this place of 0. So, like we can say that we like if p1 comes here, it is guaranteed that they

will come to this that that is the they will get the valuation of 0. So, with respect to p1, I
choose the minimum of these two values and I place the value of 0 as the heuristic for
this node. Similarly, for this node also. So, like but in this case like only one possibility is
there that is 8.

 So, I like for both of these two nodes they get the value of 8. In fact, for this node there
are two possibilities both of them have the value of 8. So, this node is also going to have
the value of 8. that means, that if I if player p1 reaches in this node no matter what they
do they will like reach an unfavorable situation that is where the final result is going to be
8 which is not a favorable for them. This way we keep on moving upward that is like
each leaf node already has a utility measure use it to update the heuristic values of the
remaining vertices.

 Consider each pre-leaf vertex if p2 is going to make the move they will surely move to
the leaf with the higher value. So, you copy the same value to the pre-leaf vertex and in
for p1 in the previous round p1 will surely move to the pre-leaf node with the lower
value. So, accordingly you update the estimates as we did here. So, for like so this is why
it is called a minimax algorithm for optimal path finding. So, at the when p2 is moving

we choose the maximum that is like in the in the in the level where p2 has to move the
heuristic function is estimated by calculating the maximum of the of of their the
maximum value of their children which in this case are the leaf nodes.

 Similarly, for those layers in which p1 is going to be is going to make the move the
heuristic function is calculated by considering the minimum value of the their children
and in so on and so forth. So, this is the way you calculate the in the heuristic function for
the entire tree. Now, what is the heuristic the optimal path? So, in the original like if you
consider the starting point its valuation is 0. So, p1 is making a move. So, like the these
are the three possibilities in front of them 8, 8 and 0.

 So, obviously, they will move to 0. So, now p2 it has has to make a move, but it has two
possibilities in front of him both of them have the value of 0. So, like since both of them
seem to be equally bad for the player p2 they may choose the one which cost less. So, one

cost 6 the other cost 8. So, they come to this one. now again p1 has to move like there are
two possibilities here either 8 or 0.

 So, p1 obviously will again choose the 0. So, they are like so I am basically blindly
trusting my heuristic function now earlier I like I when I the heuristic function had been
set So, randomly I did not I mean by trusting the heuristic function could have resulted in
me going to a like a suboptimal solution or losing the game in other words, but in this
case I have actually chosen the I have computed the correct values of the heuristic
functions. So, now if I follow them I will reach what is the optimal result for me. So, I
reach so player p1 reaches this which is a leaf node and with the value of 0. So, player p1

thinks that they have won the match. So, note that player p2 they never really got any

chance, player p1 took the first move and at that time itself it was clear that they are

going to win the game, player p2 could not have done anything differently.

 Now, so the p1 we can say they had the first movers advantage, but if p2 had the first
movers advantage then like it can be like you can see they would have taken a different
path altogether. And they would have reached this goal state which has a value of 4
which is like you can say an intermediate value which is neither too good for p1 not too

good for p2. So, like this is what is known as the game tree. Now, when I am calculating
this game or this applying this minimax algorithm to find the optimal like the optimal
heuristic values for a game tree. I can actually like make this process bit more efficient
that is I may not always have evaluate the entire game tree to calculate all the
intermediate values.

 So, it turns out that in some situations some parts of it become irrelevant that is if I like I
will let us look at this example. So, I am calculating from the leaf nodes upwards. So, I
see 5. So, like I want to like copy that value to the previous node here 5, but that also
depends on this leaf node. So, but if the value of this is 6 which is lower than which is
higher than 5, but my aim is in this layer is minimize.

 So, I will not consider this 6 at all and I will stick to 5. now here again like I have found
this value of seven and I copy that value seven in this intermediate node but then I see
that it depends on these two leaf nodes also so here I consider this leaf node four and I
place it here now it is already four Now if I want to place the value of 5 now when I see
the value of 5 here then I do not that is I do not need to consider it because I have already
found a value which is less than 5. So, if this 5 if it had children I would not need to
consider this part of the tree at all because I have like already that is I know that. like the
values which are below this they will not be any less than 5 because if this is anyway a
max layer right. So, in that case so that is I I can just ignore this part all together and I can
focus on 4.

 The similar situation happens here say like here from this node onwards I have come to

this node I have copied the value here this does not have any other children. So, the same
value is propagated again here and then and this also has no other children so the this
value is 5 is copied here now I want to see what about here now I so like I have to
calculate this value that is I have to calculate the max of sorry the mean of 5 and this
value but this value I have not yet calculated So, now I compare the sub tree this I
compare this sub tree and I look at its leaves they have the values of 9, 8 and 6 all of
which are greater than 5. So, that means, that like after applying the mean and max to this
whatever value I get it will be either 9, 8 or 6 in any case it is going to be less than 5. So,
I do not really need to calculate the value of any of these intermediate nodes I can just
prune of this thing. So, this is known as the like alpha pruning where you just prune the
sub trees with high values.

 That is you have found a sub tree where you are convinced that its value will always be
higher than the value which you currently have, but it is a mean node. So, mean node
means you are trying to minimize, but you have found a sub tree whose value will always
be higher than what you have found. So, it is not necessary to evaluate it. So, you prune
that tree. Similarly, similar situation can arise in the max layer also you may have found a
sub tree whose value is obviously going to be lower than what you currently have.

 So, you do not have to evaluate that sub tree. So, you prune that sub tree. So, that is
called as beta pruning where you prune the sub trees with low values. Now, we have
already we have several times we have discussed the concept of heuristic search and on
like we have considered the A∗ algorithm as well as the game tree. Now, it may happen
that the cost function is is is vector valued that is what is known as the multi objective
heuristic search that is as you are moving like when we are considering the shortest path
like we had only one objective that is to like the total path length, but suppose the path
length has like multiple criteria associated with it.

 So, the so in other words the cost path cost is a vector. So, when we are considering a
heuristic function h (x) though or the like f (x) g (x) etcetera those also then will have to be
vector valued to like make sure you have the compatibility with the h cost. So, we have to
change the A∗ algorithm accordingly. So, remember that when we are considering the

A∗ algorithm one crucial point was at any given point when we are trying to move from

the current state to the next state we were comparing the f values of the open vertices and
whichever vertex had the least f value we move to that one. But now when we now that
we are dealing with vectors identifying the smallest vector is that is often difficult
because f is now vector valued. So, now it may happen that there are 3 nodes for the y1

y2 and y3 for f (y1) is 348 f (y2) is 257 and f (y3) is 458.

 Now, if you see these 3 4 8 and 2 5 7 these two they form a non dominating set that is

like 3 is of course, that is 2 is of course, better than 3, but then 4 is better than 5 and 7 is
better than 8. So, with respect to some of the vector dimensions y2 has a smaller value of

f and for some other dimensions y1 has a smaller value of f. So, it is not very clear

between y1 and y2 which I should choose, but if you see y3 it is like in all the dimensions
it is like at least its f value is at least as large as the other two. So, f y so we can say that
y1 and y2 they both of them dominate y3. So, y3 I can ignore for now, but y among y1

and y2 there is no obvious winner.

 So, I may like I now I cannot go to both y1 and y2 I cannot visit both of these nodes. So,
I will have to choose one of them, but I cannot ignore the other also I cannot close the
that vertex because I mean the vertex x from which I have got these neighbors because I
that is like I have not been able to rule out the y2 it is possible that y2 will become useful

for me later. So, that is it I cannot place it in the close list as I did in the original A∗

algorithm. So, so and finally, the like A∗ algorithm is guaranteed to find a path which is
like I mean a path to the goal if it is like the if the I mean a shortest path to the goal if the
if the heuristic function is admissible. In this case we cannot say that we will find the
shortest path to the goal, but it is guaranteed that we will find a path to the goal which is
non-dominated.

 So, like like an example you can see here like the where the A∗ algorithm is applied
here for the lack of time I am not going to go into the details of this. So, but I will just
show you the first two steps. So, we start at this node s. So, I have these two possibilities
in front of me node n1 and node n2. So, for n1 you will see that it has like so I am I am
trying to calculate the heuristic function at each of these.

 So, at like if you remember at the time when we discuss A∗ algorithm we said that the
heuristic function at any for any node can be simply the minimum value of its or the
minimum cost of its neighbors. So, now this one it has two neighbors 3 and 4, one of
them has the path cost of 3 2, the other has the path cost of 2 3. So, 3 2 and 2 3 however, I
am not able to compare. So, they are non dominating set. So, I consider like both of them
that is like as the as the choice of their heuristic.

 The heuristic in this case is not a single value, but a set of values. So, this is what sets the
a multi objective heuristic search different from the original heuristic search. In case of n2

however, there is no such problem. In n2 has two neighbors 4 and 5, one for one the path
cost is 3 2, the other also has path cost of 3 2. So, either way the heuristic value of the
heuristic is 3 2. Now, if you consider this n like n3 or let us consider n4 it has 2 neighbors
one of them is 1 3 the other one is 1 1.

 So, 1 1 however dominates 1 3. So, I consider the heuristic value of n4 as just 1 1 and so
on and so forth. So, this way we consider construct the heuristic function. Now, the same

A∗ algorithm we apply using these kinds of heuristic using these values of the heuristic. I

start at n the next node is n1.

 So, the g the cost for reaching n1 is of course, 2 comma 3. Now, like at n1 the heuristic is

like we have a set of heuristic values 2 3 and 3 2. Now, from n1 if I go to 3 the in that
case the value that is if I am choosing this value in that case the value of f will become
the current value of g which is 2 3 plus the heuristic which is 3 2. So, 2 3 plus 3 2 is 5 5.
right.

 On the other hand I could also have chosen this as the value of my heuristic. So, 2 3 and
3 2 are both possible values of heuristic. If I say 2 3 then the value of f would be 4 6, but
if I say 3 2 then the value of the heuristic would be 5 5. So, 4 6 and 5 5 both are possible
values of f that is for n1. for n2 however like the path cost that is the g is 4 2 now I have

already identified that the heuristic is 3 2 so the f value of n2 is 4 2 plus 3 2 which is 7 4

so like I have got n1 and n2 so now like I may like you can see once again that these are
non dominated sets So, like there is no obvious it is not clear to me which one I should
expand.

 So, let us say I decide I will expand n1. So, again like when I expand n1 I encounter n3

and n4. So, I like add them to the open list n2 is still there. now again I compare their f

values and this time I decide to expand n4 now you will see that n4 however called

dominates n3 even though it may not sorry I see that n both n4 and n2 they dominate n3 so

now between them I decide to expand n2 first So, I expand n2 and n 5 gets added and now

I decide to expand n4 and so on and so forth. So, this is how the multi objective heuristic
works.

 Similar situation I can use in case of multi heuristic objective game trees also. So, let us
say that I am at a like I am trying to maximize like that is I am player p2 who is trying
who wants to maximize. Now, there are three like the options available in front of them
11 5 9 4 and 7 3. So, 11 5 of course, dominates 9 4 and 7 3. So, I just choose 11 5. If I am
considering the player p1 who wants to minimize then the like we see that from the
perspective of minimization 7 3 dominates.

 So, like for the player p1 the obvious choice is to choose 7 3. So, the like the game tree
accordingly can also be like modified in this way some of the and like as happened earlier
some of the heuristic values they will not be single vectors, but actually collections of
vectors and it will this will happen if there is a non dominated non dominating situation

available like 11 5 and 5 7 you see that they these are non dominating solutions with
respect to minimization. So, both of them are stored at possible heuristic values. So, so
when do we where do we like encounter these situations in economics or why are these
relevant for economics. So, game trees can represent many strategic interactions among
various stakeholders in any market scenarios let us say competing companies or
competing suppliers and consumers. So, each of them can be considered as different
players each of them playing with certain objectives like which are selfish to themselves
and they make moves turn wise.

 So, like one company for one company making a move may be lowering the prices of
something for another company it may mean raising the prices of something and so on
and so forth. So, the whole situation is like the competition the market competition
between the players is modeled as game tree. And like in case of behavioral economics
also game trees allows the economics to predict how the rational agents are going to
behave in various strategic situations such as like the competition or bargaining and or
negotiations and so on and so forth. In case of macroeconomic policy making also like
which we have the concept of multi objective optimization which we just saw. So, like
for example, bank has to make a monetary policy and it has to keep changing its
monetary policy like to and while doing so it has to like it has so many objectives to
consider inflation, unemployment and so on and so forth.

 So, with this we come to the end of this lecture. In the coming lecture which is lecture
10, we will start again shift tracks and we will start on data driven models or which we
can call as machine learning models and how they can be like useful in various tasks
related to economics. So, we will start with unsupervised learning. So, till then all of you
please take care and stay well. See you soon. Bye.

