
Artificial Intelligence for Economics

Prof. Adway Mitra

Artificial Intelligence

Indian Institute of Technology Kharagpur

Week – 02

Lecture - 08

Lecture 08 : Heuristic Search Techniques

 Hello everyone. Welcome to this course on Artificial Intelligence for Economics. I am
Adyay Mitra, an Assistant Professor at Indian Institute of Technology, Kharagpur. And
today is our lecture number 8 in this course. In the past two lectures, we have been
discussing about optimization techniques, constrained and unconstrained optimization.
Now, today we will slightly change tracks and we will talk about different class of
problems which also frequently arises in this domain.

 we will discuss these problems which are related to heuristic search. So, like as we
mentioned several times in the last two lectures the task of optimization often arises in
economics when we are especially considering the resource allocation problem. That is to
say we have like we have some resources which we want to distribute or allocate to
different sectors with the hope of optimizing some possible some outcome. However, we
may have different kinds of restrictions on which kind or what kinds of allocations are
possible.

 Now, here also we are discussing something which is not very unrelated to that, but we
like here you can consider it like in a sequential problem. Let us say that like at any given
point we have a system let us say like we are at the system is described by state of the
system. Now, what is the state of the system it is something which describes the system.
So, let us say that we have a number of sectors and to each of the sectors we have
allocated some amount of money. So, that is the current state of the system I mean how
much money has been invested in which sector and what is the like how much output I
am getting that is the current state of the system.

 Now, like let us say I am not satisfied with the current state of the system I want to reach
some goal I that is there are some states of the system which I consider as very ideal that
is let us say that both of the like let us say all the different sectors have been able to
generate some minimum utility value may be that is something which I consider as a goal
state. So, I want to reach a goal state, but right now I am not in the goal state. So, just like

in the numerical approaches to optimization I start with any initial point, but we generally
step by step I we try to go towards the optimal point. Here also I am doing the same thing
I am starting with any with some initial condition initial state of the system. Now I will
try to gradually perturb the system by changing the system one step at a time so that I
gradually move towards a desired or goal state of the system.

 So, this is represented this kind of like the kind of algorithms which I am going to
describe for this approach is known like is basically centered on the concept of graph.
Now, what is graph you I am sure most of you are familiar with graph anyway it is a
collection of vertices some of these pairs of some pairs of vertices may be connected by
edges. For example, if you see here we have 6 vertices these blue bubbles they are the
vertices. Now, some pairs of them like this and this they are connected by edges, but not
all pairs need to be connected by edges for example, these two they are not connected by
an edge ok. Now, these edges they can be directed or undirected as the as you can see in
the diagrams.

 Now, in the like in the example which we are just discussing each of these vertices they
may indicate one state of the system and neighbor I will say that one let us say let us
consider this vertex. So, it represents a state of the system and then it has these edges it
means that from the current state of the system it can be perturbed to a different state.
And, that state might be represented by this variable by this vertex or by this vertex, but it
cannot be spurt up to a different state like say this one or this one. I mean these are also
valid states, but from this particular state you cannot reach these in one shot. Even if you
have to reach you will have to do it in multiple steps like this.

 Say for example, like in these graphs let us say the I am currently here my this is my
state and I want to take my state to here. Then now since these two do not have a direct
edge between them. So, like it is not possible for me to change the system from here
directly to here. So, what I can do is I can move in a step by step way from here I go here
and then from here I go here or from here I go here and here I go here. So, it is like you
can say that if a direct journey is not possible then we do break journey.

 So, that is like a break journey in this case is nothing, but a connection like a sequence of
these edges ok. So, this sequence of such edges this is known as a path in case of a graph.
Now, in if it is a directed graph then a path is like a sequence of edges I mean directed
edges such that only these kinds of. like tail to head connections are possible that is once
I go from A to this node then from the from A to. So, this is I let us say I am currently
here there is an arrow from here to here.

 So, from A I can come to this node, but I cannot go here because there is no arrow from
here to here. There is an arrow from here to here, but that is not the same as an arrow

from here to here. So, I cannot go to C. So, from this node I can only go to P ok. So, like
in case of our under so, this is like the directions of the edges we have to consider in case
of directed graphs, in case of undirected graph of course, there is no such problems.

 So, here like you can understand that there is no like in the directed graph the there is a
path from a to b that is a to this node and then this node to b. But if you consider the this
ac path then you cannot find a path from a to c that is from a you come to this node, but
from this node you are not able to reach c because there is no edge like starting here and
ending here yeah the reverse is there happens So, like in the undirected graphs however
you can see that both a b path like this as well as the a c path like this both of them exist.
So, that is the difference between a directed graph and an undirected graph. Now in any
graph If there is a path from between every pair of vertices, then we say that the graph is
a connected graph. So, what is a path? Just to recap a path is a sequence of edges like
this.

 If it is directed edges, then only these tail to head like movements like this are possible.
like from if I am calling this middle central node as let us say E then from A to E I have a
edge, but I do not have an edge from E to C. So, I cannot say that A and C are connected
by a path, but in the same thing I can say in case of the undirected graph also. So, now
what now we have a graph like this what do we do on this graph. So, we may start at a
particular vertex which we can call as the root node and our aim is to discover the other
vertices by following the edges.

 So, that is the graph search problem. It can also be that instead of just exploring the
graph I may be looking for some specific vertices also. So, in the in graph theory there
are multiple algorithms which are provably correct and provably converts to the correct
solution like. So, some of these are known as the breadth first search algorithms that is to
say whenever we reach a vertex we note down its unexplored neighbors and then visit
them in that order. So, like when I come to let us say 2 if I reach this vertex called 2 here
then it is like from there we have some like some other vertices I mean these and these
they are all neighbors to this vertex where 2 is written on it.

 So, like I can like consider that from 2 I just put like these 3 vertices I keep in a list and
then I just visit one of them at a time. So, like when I come here then maybe I will come
across some other new vertices which are linked to 2. So, those new vertices also I will
add to the list and then again from the list I will find one more vertex and I will join there
and so on and so forth and the whole this process will just go on and gone. So this is the
graph search approach. Now another question that frequently arises is shortest paths in
the weighted graph.

 So what is the weighted graph? A weighted graph is slightly different from a graph like

this because in this case not only we have edges but we also each of the edge has a
weight on top of it. And, the weight of a path a path remember is a sequence of edges. So,
the weight of a path also we can define as simply the sum of the edge the weights of all
the edges which form the part of the path ok. So, this way we can get like define the
weight of the path. So, shortest path algorithm is like in in a given vertex.

 sorry in a given graph we are provided with like a source vertex and a target vertex. Our
aim is to find the sequence of moves which I must make in order to reach the that target
or goal vertex. So, that is the shortest path algorithm. Now, already there are several
algorithms in graph theory once again for calculating the shortest path between any pair
of variables or let us say from the from a fixed origin to all other vertices. So, these kinds
of algorithms are known as the Dijkstra's algorithm, the Floyd Warshall's algorithm and
so on.

 So, that is about the shortest path in a standard weighted graph that now suppose the
thing is the algorithms which I just mentioned they are very good algorithms they are
very solid and efficient algorithm plus they are provably correct. That means to say like if
the whole graph is known then they will always give us the correct answer. They will
always converge to the like the exact they will converge to the exact like exact solution.
It will be able to find the path which truly minimizes the cost ok. But now as I said here
we have made an assumption.

 The assumption being that the entire graph along with all the vertices and edges and their
weights are known beforehand. But, often it happens that this is these are not known
beforehand the entire graph we do not have access to, but as we reach a vertex then we
can access only the neighbors of that vertex. So, that that is a restrictive criteria. So, now
like for example, consider the game of chess. So, let us say each of these vertices they
represent the state of the game.

 Now, I can from one state I can make one of the moves which are allowed according to
the rules of the game and I can move to another like another state of the game. And in
case of economics also like let us say that we some allocation is there from I make some
changes that is I transfer some money from one sector to another. So, I move to a
different state. So, but now it might happen that I do not have an idea of total how many
of these states are there from one state which all states I can go and so on and so forth.
But when we come to one particular state, then we may want to find like what are the
possible next steps that are available.

 So, this is how the I mean the graph the entire graph is not shown to me right away, but
only but as I keep traversing through the graph from jumping from one vertex to another
new vertices are progressively revealed to me. So, in such situations these algorithms like

Dijkstra or Bellman Ford they will they may not be able to work. So, then like what we
need is what is known as a heuristic search technique. So, now what is a heuristic search
technique? The heuristic search technique is basically the following. So, we at any given
state that is at any given vertex we have an estimate how far that state or that goal vertex
is.

 from that state or that corresponding vertex is to any of the goal vertices that is let us say
I am currently here. So, that this node from here to this goal state the path length is
obviously 6 from here to here if you want to go then the goal I mean then the path length
is equal to 8 and like and from here if you want to go like this. Then the Basland is equal
to 9. So, then what is our task our like or what happens in heuristic search the heuristics
in case of heuristic search at a whenever I am at any of the vertices I make an estimate of
how far the goal state is from it that the estimate which I am making it may not be the
right estimate or it may not be the right value it is just a guess which I have made. So, in
this case for example, the numbers which I have written down in any of these vertices
these are numbers are the estimate.

 So, from here as I already said the length of the path from here to the goal node is 6, but
instead I have made I do not know that because I do not have know the graph structure,
but I have somehow made an estimation that it is equal to 5. in this case also I have made
an estimate that is equal to 4 and so on and so forth ok. So, these values these are known
as the heuristic function. So, what is a heuristic function? Heuristic function is basically
you are at this like any particular node let us say x. So, what is the projected cost from of
reaching the or any goal state for from that variable from that node x.

 Now, so if we are going to consider path from the vertex from the start vertex to a goal
vertex via the your current state which is x, then the total cost you will incur for that path
is of course, is let us call that as f (x). So, that cost has two components one is the cost of
going from the origin or from the starting point to the current node x and which we call as
the g (x) and the second part is called as the h (x) which is basically the cost of going from
the current vertex to one of the goal nodes. So, now we come to well known algorithm
for such heuristic search which is known as the A∗ algorithm. So, I will explain the A∗
algorithm like as follows, but that is it can be written down in the form of an algorithm,
but I think it is easier if we discuss it through the example below. So, what happens in
this example? So, we have this graph like this, this green nodes they indicate that they are
the goals that is if I reach any of these it is enough and what is A? A is the starting point
of the whole thing that is I am it is the state at which I currently am from here I will go to
one of these variables and I mean I will go to one of these next states and so on and so
forth.

 So, the value of the heuristic functions like h (x) for all of these vertices has been
provided to us in case of the goal nodes g and h the heuristic function is not needed
because they are already the goal. So, the heuristic function value for them is going to be
0 that is since we are already at the goal then there is no cost of reaching a goal right. So,
now for the all the remaining points a b c d e f we have the values of the heuristic
functions at each of them. So, now what we do our aim as I already said is to find the
shortest path from the start node a to any of the goal node goal nodes either g or h. So,
now how do we proceed the a now what does the a A∗ algorithm say the A∗ algorithm
says from the from your current state you like if like if the current state is already a goal
then you just stop.

 But if that is not the case which is not the case in this case obviously list down your
neighbors and add them to a list called close. So, who are the neighbors of a obviously c
and d. So, c and d I now add to like I mean they are already in the table, but they are that
is like earlier i was considering the g (x) for c and d as very high because i did not like
like basically i did not know the their values so i just i mean so so what is meant by gx gx
is the cost of reaching these variables i mean these these nodes from the starting point so
since i did not know earlier that there exists a path from a to c or a to d I just assume that
I just said the high value of 100 here assuming the worst case scenario. But now I have
seen now that I have seen that C and D are the neighbors of A and AC length is 2 and AD
length is 5, then we can actually make some changes. now i know that like this the g
values of c and d need not be a very high that is one can easily reach c and d both from a
with cost like 2 and 5 which is shown in the graph So, the like once I start out from A
and I find its neighbors are C and D.

 So, I like explore the neighbors. So, now you see that the G value of these neighbors
which were earlier 100 before they were discovered now that has gone down. Why
because I know that there is a path from A to C as well as A to D and we know the cost
of those paths also. So, now if I want to estimate the value of f at a c and d. So, what is
meant by the value of f at c it means the what is the least cost of a path that goes from the
start node a to one of the goal nodes g or h via c. So, it and as we have already discussed
f (x)=g (x)+h (x).

 Now like h x we already have calculated g (x) is like also now known to us I mean g (x)
is like basically we are considering the cost of coming to a and then to that I am adding
the cost of coming to c. So, the g (x) is now equal to 2 because a is the start note anyway.
So, there is no cost of coming to a, but from for going from a to c like this a to c I have I
incur a cost of 2 and similarly for going from a to d I incur a cost of 5 which is also noted
here. Now, in addition I am since I am interested not in the length of the subpart from a to
c or d, but I am interested in a path from a to either g or h. Now, I have I am considering

only those paths which pass through c and d and for each of those paths I am estimating
the possible value of f.

 So, applying the formula that is f (x)=g (x)+h (x) we find that the f score for both c and d
are 7 and 6 respectively. So, what does that mean? That means that like my heuristic
function note the again reminding that heuristic function is a guess of how far the
solution is. Now, if we but if we trust that heuristic solution it is suggesting to me that
there exists a path from A to a goal node via D whose length is 6 and there also exists
another path from A to a goal node via the vertex C with the f (x) value of 7 ok. So, and
like in both cases I note down that if for C and D the its ancestor is A because it is we
started from A and we came to C and D. So, this is what the table looks like at this point.

 Now, what we do since we have since we our estimated path cost from A to a goal node
via D is better than that via C. Note that in case of D the our estimated total path length is
C 6, but while the other two that is C and E this quantity has gone up to 7. So, now what I
so this A∗ algorithm this is known as the best first search. So, which means that whatever
option appears best to me right now I take that option. So, like I move so since it seems
that a path via d is cheaper then I just move to d.

 So, that is the thing which I do. Now, once I have reached d from d I can like find some
other points. So, what are these other points? So, note that from like from A I found C
and D. Now, I have decided to go to D. Now, once I go to D, I will find its neighbors.
Now, D actually as you can see has only one neighbor which is equal to E.

 So, I have now found a path from A to E. So, I will now examine this path further that is
first we already know that the heuristic function at E at node E that is equal to 1. That
means I have a reason to believe that from node E I can reach a goal node in just one
step. So, but on the other hand what is g (x)? g (x) is like the cost of reaching the node d
sorry the cost of reaching the node e via d. So, like obviously you can understand that I
have come from a to e in that process I have incurred a loss of 6 which is which I store
here. Now using this h (x) and g (x) I calculate f (x) according to the formula

f (x)=g (x)+h (x).

 Once again reminding what is f (x)? f (x) is the estimated path length from a to a goal

node via e. What is g (x)? g (x) is the path cost of the path already traversed that is from a

to e and what is h (x) is the projected cost of the of an optimization path starting from the
current node e and reaching a goal node g and h ok. So, this is where we stand right now
and we continue this process. So, I reach c sorry I reach e and I find like its one of its
neighbor is goal and I also find that one of its another of its neighbor is f ok. So, for f
also I like you can say that now that I have that is I now that I have come to e I find that

the possible solutions that is I that is I have now added this equation this sorry I have
added this variable or this node called E into my into an open list that means it is a vertex
which I am considering to visit.

 So, now from the list of my open variables note that my earlier these two variables were
open C and E. So, from these two I like I will now choose any one of them for C I had
already calculated the f (x) was equal to 7 for e I just calculated that f (x)=7. Once again
h (x) from e is 1 even though it is written as 2 here. So, again once again there is a typo

and 6, 6 is like the path length from a to e via like via d this a to d is 5 and d to e is 1.

 So, total 6 coming from a to e. So, the expected or the estimated length of a path from
the start to a goal via e that seems to be 7. Now on the other hand for like that is I have
already got d, but in the open list I already had the variable c and for that also the path
length is also 7. So, I now have two options in front of me either I can explore E further
or I can now explore C. Now for whatever reasons I choose to do the latter that is I now
focus again on C and see what are its neighbors. From the neighbors of C among them A
has already been visited its close which put in the close list.

 e also has been visited and even although e however is not in the closed list its yellow
color indicates that it is right now in a open list now from a from c however we can reach
these two new variables f and b so note that f and b they were earlier blue now they are
orange which means that they have now joined the open list. So, now, I must calculate
what is the like f (x) in case of both b and f I mean capital F. So, that is the value of this
function. Now, you can it can it is not very difficult to calculate or understand that from b
the distance to a goal node is quite high that is equal to 9. The same however, cannot be
said about the point this like this the other points which we have in the open list.

 that is say f and so on or e e f and so on these are the points currently the points which
are in my open list are b f and e. So, for b the f value is 9 for F the value F value is also 9
and for E however, the F value is only 7. So, it suggests that if we go to E now that is if
we are trying to reach a goal via E that may be cheaper than trying to reach a goal via
either B or F. Now, so what do we do? We now shift to E.

 So, note that E can be reached in two different ways. I can either reach it via D or I can
reach it via C. So, like both of them have the same path cost of 6 each. So, had it these
two path cost not been the same, then I would have chosen it to come to E. via the cost
that cost I mean via the path that cost more, but since that I that is not the case I have
come to E, but I am considering D as my predecessor. So, that is I could also could have
considered C as my predecessor, but to break ties I have simply chosen D.

 So, the path is currently A D E. Now, that E has been now that these E, F and B are in
the list I now must explore their neighbors in turn. So, now between B, F and E the three
the three vertices which are still open we see that E is the one which has the lowest value
of F. So, accordingly we visit the node E. So, from A we went to D and now to E. Now,
again we repeat the same thing for E again we consider which all neighbor neighbors it
has the answer is of course, F and H apart from I mean sorry C F H and G.

 Now, So, like all of these new variables I mean the f, g etcetera they like h for example,
h was not part of the list earlier, but now that we have reached e and h is a neighbor of e.
So, now like h also it changes color and it becomes yellow. So, now we have so many
open vertices b f g and h. So, for each of them I have some estimate of the this cost
function.

 So, now G of course is the goal node. So, now you can see that in case of B the cost is 9,
in case of F the cost is also 9, in case of G as you can see the cost is 8 and in case of H
also the like we can like reach E at cost 6 and we can reach the H at cost 10. So, the like
the cost for g is 8 and the cost for h is 10. So, obviously, following the algorithm as we
have been following we will go to g.

 So, g is our goal state. So, we stop here. So, we have now been able to find a path from
A to G. So, as you can understand it is the path A D E G and its cost is 8. Note that if you
consider the this path A C E G that is an alternative path that also has the same length of
8, but it was not considered. So, this is the A∗ algorithm. Now, so what does this A∗
algorithm give us? I mean the other graph search algorithms like breadth first search,
depth first search, they are guaranteed to give us the correct solution or to like help us to
search the vertex we are looking for.

 Same goes for Dijkstra's algorithm or the these Floyd Warshall's algorithm of finding the
shortest path. in this case also can we say that or can we prove that it will this algorithm
will give me the shortest path from the start to one of the goal states the answer is yes as
long as the choice of heuristic h (x) that is admissible. Now what is admissible? It means
that it should always underestimate the least cost to any goal state. Like for example, if
you consider this node C, so we can see that from C we can reach a goal state at the cost
of at most like that is the shortest path seems to be of length 6. that is basically as I said
earlier also the heuristic function is the estimated path cost from C to a goal state and its
value then should not exceed the actual cost which is 6.

 So, I can put H of C as 4 or H of C as 3 or even 2, but it should not be say 7 or 8 if that
happens. that is if I am using the heuristic function if I choose in such a way that it
always underestimates the total cost to the goal node then I am guaranteed to find the

correct solution. However, if I by any chance if I overestimate then it can it is not
difficult to construct an example where we will see that we will not be able to find the
correct solution. So, like I leave this as an exercise to you. So, in this case I have chosen
some of the heuristic functions like in case of d for example, I have chosen the heuristic
function as 10 even though from d I can easily reach a goal node at a cost of only 3 that is
from d to e and e to g total cost of 3, but instead I have taken 10 as the heuristic function.

 Similarly, I have also changed some of these the heuristic functions at some of the other
variables. So, now if it if you run the A∗ algorithm the way we defined it I am not
showing the full run due to lack of time, but you will find that the path we come up with
is this path a c f h and whose cost is 9. So, even though the if we had taken this path a d e
g its length its length is 8. So, clearly we have made a mistake we have found we have
missed the actual shortest path and we have found the longer path and I am thinking that
the longer path is a shortest path which is of course, wrong. So, why did this mistake
happen? The mistake happened is because the heuristic function at D was set to 10 that is
when I found the vertex D I by looked at its heuristic and I thought that the goal node is
very far away from here.

 So, I did not consider it any further and by doing so I missed a trick there the solution
actually there is actually a shortest path solution from a to g via d which cost only 8, but
because of the of that the the problem with this heuristic function I never considered this
d at all. So, that is why it is important to that the heuristic function should always
underestimate the true cost. Now, in one simple choice of this heuristic function H is you
simply take the minimum cost to any of its neighbors that is from D let us say its
neighbors are A and E the path cost are 5 and 1. So, you simply take the minimum value
of them as 1. So, because that is a safe choice that is always going to underestimate the
goal I mean the cost to the goal.

 So, because like the 1 is the minimum cost at which you can reach some neighbor from
D. Now, from that neighbor if you have to reach the goal that will be something even
more. So, if you just say 1 as the heuristic function obviously, that is admissible that is
definitely underestimating the total cost to any of the goal nodes. So, this is often a good
heuristic I mean a good choice for each. So, anyway so we have why are we discussing
all the these things in the class of AI for economics because these heuristic search it the
need for heuristic search it often arises in economics.

 That is when we are navigating a sea of different possible decisions, but we cannot do
not have knowledge of the consequences of all the decisions. When we are taking a
decision we know that what next decisions I can take and then I can calculate the costs of
taking those decisions. Like for example, during covid we like I at in like the we often

have to depend on guess work depending on the situation right now I can have to decide
whether to impose a lock down or just let us see things carry on normally and in for both
there is a cost, but I cannot predict beforehand that if I keep on imposing lockdown then
what will be like the result after let us say 4 months or 5 months that I cannot say
beforehand. I have to take a short steps at a time let us say the next few days. Similar
situations also arise in case of supply chain optimization where the companies may need
to optimize their supply chains to minimize the total cost or maximize the efficiency.

 So, they have to go for these kinds of graph search algorithms and they often do not have
the access to the entire graph due to various uncertainties. So, they have to use this kind
of heuristic approach. Similarly, for in case of portfolio optimization also when I that is
when I am I have a set of assets and I am trying to like invest some of those assets hoping
to maximize the gain. And now I do not know like I do not why also I may want to
minimize the risk, but I do not know which assets to access like I may in fact it like right
now I may be investing on some assets.

 later I may invest some other assets. So, the my decisions are changing over time. So, it
is a sequential case and I like at a time I can only see what will happen in the immediate
future not what will happen after a sequence of case. So, I do not have access to the full
graph I am taking one step at a time. So, that is where I need the this concept of like
heuristic based graph search. So, with that we have come to the end of this lecture in the
which is lecture 8 in the coming lecture also we will discuss some concepts which are
related to this type of heuristic search. So, we will see till then if all of you please take
care and stay well see you soon bye.

