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 Hello  everyone,  I  am  Adway  Mitra,  an  Assistant  Professor  at  Indian  Institute  of 
Technology Kharagpur and I welcome you to this course on Artificial Intelligence for 
Economics.  Today is  the lecture 7 of  this  course and our topic today is  going to be 
Constraint Optimization. So, in the previous lecture which is lecture 6, we had dealt with 
the we had introduced the concept of optimization and we had also discussed why it is  
extremely useful in economics. in many economic applications we deal with the like the 
problem of optimization. And we had also seen that like in case of optimization problems 
there is an objective function which we want to maximize or minimize, but most of the  
mathematical techniques that we use like look upon it as a minimization problem. So, that 
even if it is a maximization problem we change the objective function so that it becomes 
a  minimization  problem.

 Now, we had also seen several algorithms some of them are like analytical that is based 
on differentiation and equating to 0 and some of them are numerical that is for example,  
based on gradient descent where we start with an initial solution and move step by step 
towards the actual solution. So, those are all useful techniques. The problem is that in 
those techniques are useful only for unconstrained optimization problems. That is to say 
like there is an objective function which we want to minimize, but we do not  put any 
constraints  on  which  solutions  are  acceptable.

 So, we had earlier discussed the concept of feasible regions or the feasible solutions. So, 
a feasible solution when we are considering the feasible solution which is not the entire 
space of variables I mean the entire space which the in which the variable leaves. In that  
case we the methods like gradient descent will not work because even though it  will 
minimize the function it will the solution at which the function is minimized may not be a 
feasible solution that is it may not satisfy the additional constraints which the like which 
may have been imposed on the solution. So, in this case we are now going to talk today 
about the another problem which is called the constraint optimization which is you can 
say  one  step  away  from  or  one  step  further  from  the  problem  of  unconstrained 



optimization which we had discussed in the previous lecture.  So,  in case of constant 
optimization  as  usual  there  is  an  objective  function  which  we  want  to  minimize  or 
maximize  with  respect  to  one  or  more  variables.

 For example, we may want to allocate resources to different sectors to maximize the net 
revenue  or  the  net  utility  from all  of  them.  The  concept  of  utility  function  we  had 
discussed in details in lecture 6. So, once again we consider the same problem of resource 
allocation which arises frequently in economics. you want to allocate some resources into 
in  different  sectors  let  us  say.  However,  not  all  possible  solutions  are  acceptable.

 So, it like it might be that you it the for the best results you if you like if as you go on  
increasing the amount of investment to each of the sectors then it is expected that you 
will probably get the best returns. So, you just go on increasing how the your investment 
and that is all you need to know. But in general this is not a feasible solution why because 
the total amount which you have to for investing the budget which you have is limited. 
You like that is whatever allocation of resources you want to do to the different sectors 
the total amount of resource however may be limited. So, that is in some cases in some 
way  we  can  say  that  is  a  constant  which  you  may  have.

 Apart from that you may have some other kinds of constraints also. For example, there 
may be a particular sector to which you do not want to allocate more than a particular  
sum of amount or you may want that the allocation of resources into the different sectors  
it should be fair allocation. That is it should not happen that you are pouring 90 percent of 
your resources into one sector and 10 percent resources in all other sectors together. that 
is not allowed. Let us say that like you set some limit that no sector will get let us say 
more  than  twice  the  resources  which  is  allocated  to  any  other  sector.

 So, these are various constraints which we can define on the allocation. So, then this 
becomes a constraint allocation problem. It is no longer enough to minimize or maximize 
the net utility which you are talking about across all the sectors, but in addition to it the  
whatever allocation you are  proposing that allocation must also satisfy certain constraints 
like the ones which we just said. So, the solutions so it is possible that the solution to the 
first problem that is the an allocation which maximizes the utility function  it may not be 
feasible because it may violate more like one or more such constraints right. So, like only 
those  solutions  which  satisfy  all  the  constraints  we  will  consider  and  those  are  the 
feasible  set.

 Now it may happen that if you consider only or if you are restricting yourself to only 
those solutions which satisfy all of this constraint then this  So, like utility function will 
not be maximized as much as it would have been and we not had this constraint, but there  
is no way around it. So, like restricted to these few constraints you have to do as best as  



you can. So, that is called as the constraint optimization problem. So, let us start with the  
simplest of constraint optimization problem which is the constraint linear optimization. 
So, what happens here as the name suggests here the objective function which has to be 
maximized or minimized that is a linear function as you can see like c1 x1+c2 x2+...+cn xn.

 So, there are n variables as you can see each of them has its own coefficient. Like there 
might have been a constant term also, but that is not relevant anyway because we are 
looking for the variables only. So, this is the thing which we want to maximize. However, 
we have certain constraints as already mentioned. So, now these constraints they can be 
of  these  types.

 These are the constraints are also of the linear like linear constraints. Like you as you can 
understand each like here we are saying m inequalities each of them each of these m 
inequalities involve the n variables. So, furthermore we have one more criteria that is all  
the variables they are non-negative.  So,  these are like we can say some  n+1 sets of 
constraints  sorry  m+1 set  of  constraints  which  we  have.  Note  that  each  of  these 
constraints like they are first of all there it is a linear relation and secondly it is a less than  
or  equal  to  relation.

 So, like the standard practice is the if we have this kind of thing like b1 or bm we bring 

them to the left hand side and just make it and just bring it to the form like say h ( x )≤0 or 
something like that. So, that is a typical inequality constraint. So, now we convert the 
problem the constraints into a system of linear equations with the help of slack variables. 
So, we right now we are having inequalities. Now that means what that means if we add 
some quantity to the I mean like here inequality means that the left hand side is less than 
or  equal  to  the  right  hand  side.

 Now, so that means, if we can now add some quantity on the left hand side I mean a non 
negative quantity if I add on the left hand side then it should become equal or it can 
become equal to the right hand side. So, the quantity which has to be added so that this  
inequality becomes an equality that is known as a slack variable. So, we have right now 
we have a system of inequalities we convert them into a system of equations by like  
introducing some new variables which are known as slack variables. So, obviously, each 
of  these  so,  total  m  inequalities  are  there  each  of  them  have  to  be  converted  into 
equations.  So,  we  have  to  add  m  new  variables.

 once we have that then we have got a system of linear equations and we often know how 
to solve a system of linear equations. We already had n variables now we have added 
these new m slack variables. So, total m plus n number of like variables we have got and 
we also have got m equations. So, now in general we know that like we need as many 



system I mean as many equations as there are variables, but in that this case this that is 
not happening. So, we will not be able to apply the standard methods and of algebra and 
just  get  the  get  a  unique  solution.

 but instead we will have to consider like a family of solutions. So, it may happen. So, 
this is typically it is an under determined system that is there may be more than one 
unique  solutions  here.  What  do  I  mean  by  unique  solution?  Unique  solution  is  one 
particular assignment of values to all of these m plus n variables. So, m plus n variables 
m  equations.

 So, it is entirely possible that there are multiple solutions to this problem. So, now what 
do but our aim is not to solve these constraints our aim is to maximize the objective 
function. So, each solution of these constraints. So, let us just say there are 100 solutions 
or 100 possible values of  the these m plus n different variables which satisfy all of these 
constraints ok. So, then we have the question is out of these 100 possible solutions which 
of  them  maximizes  the  value  of  p  right.

 So, we will have to plug in those 100 solutions to this p and c what is the I mean which 
of those maximizes the value of p. So, that is the very broad idea. Now, like just to see an  
example here we had like this was our original problem, this is the objective function 
which we want  to maximize and these are the constraints.  So,  now these constraints 
which are inequalities we convert them into equation by adding these new slack variables  
s1 , s2 ,…, s p and so on. So, now we using this we like define something known as a basic 

solution.

 So, what is a basic solution? Even a linear programming with n decision variables and m 
constraints a basic solution of the corresponding initial system is a solution of the initial 
systems in which n of the variables are equal to 0. So, total as I already mentioned m plus 
n variables are there. If any at least n of them are equal to 0, it could be that all of these 
original variables which are called decision variables, one possibility is that all of them 
are equal to 0 and the remaining are non-zero that is one possible basic solution. it could 
also be that some of these are 0s and some of these are also 0s that is the more general  
solution. So, like each of the these configurations where at least n of them are equal to 0  
that  is  known  as  a  basic  solution.

 Now, we define any further  What is the basic feasible solution? Now, if a basic solution 
of the initial system corresponds to a certain point in the feasible region of the original  
linear program, then it is called as a basic feasible solution. What does that mean? So,  
point in the feasible region of the original LP this basically means that such a point or 
such an assignment to these variables such that all of the constraints are satisfied. That is 



to say we are talking about like assigning values to these variables x1 , x2 , s1 , s2 etcetera 
such that at least two of them are equal to 0 and additionally like they satisfy together  
they satisfy all of these equations. So, like if we plot it graphically then it will become 
clear  that  like  these  basic  solutions  are  really  the  corner  points  of  a  like  a  high 
dimensional  polygon or  whatever  we can call  want  to  call  it.  So,  like  in  like  let  us 
consider  this  two  dimensional  space.

 So, there are two linear decision variables in this case x1 and x2. Now, we are defining 
the feasible region in this way. that is like. So, each of these straight lines we have two if  
you see it has two straight lines the first one and the second one. So, the feasible region is 
like the quadrilateral  which is  defined by these two in addition to these sides which 
enforce  the  this  constraint  that  just  a  second.

 which enforce these constraints that is the positivity constraints. So,  x1>0 x2>0.  So, 
those  are  these  xs.  Now,  when  we  are  talking  about  the  first  two  criteria  that  is 
4 x1+2 x2≤32 and thus other one. So, the first corresponding to the first inequality there is 

one line like this  So, every point which lies on this side of the line they satisfy the  
inequality.

 Similarly, for the second constant also there is the another line like this and everything 
that lies on this side of the line they satisfy the second inequality. Now, both inequalities 
have to be satisfied. So, we need to consider the intersection of these two regions where 
both of those I mean functions they will have a value which is less than or equal to 0 that 
is  this  quadrilateral  and  we  also  have  these  bounds  which  are  imposed  by  these 
constraints. So, basically like we are searching for like in I mean the feasible region is  
this quadrilateral. So, only points which are within this quadrilateral they are acceptable 
and they are feasible and when we are trying to minimize the objective function that is  
this  function  we  must  only  restrict  ourselves  to  points  within  this  quadrilateral.

 That is if it were possible we would have to calculate the value of the objective function 
at every value within this quadrilateral and at whichever point that objective function is 
maximized we have to consider that point as the actual solution. Now we come to what is 
known as the fundamental theorem of linear programming. The fundamental theorem of 
linear programming basically tells us that. If at all a solution exists to this problem, then 
that value must occur at one or more of the basic feasible solutions of the initial systems. 
Now,  what  is  basic  feasible  solutions  where  at  least  n  of  the  variables  are  0.

 So, in this case in this example n is equal to 2 that means, out of the 4 variables that is 2  
original variables x1 , x2 as well as the 2 slack variables s1 and s2 out of these 4 at least 2 
have to be 0. So, which obviously mean that they will have to be corner points like this.  



Like for example, in this one we can understand that 2 of them are 0 because like first of 
all  x2=0 and secondly the  like if this point lies on one of those constraints. So, the 
corresponding slack variable is also equal to 0. So, in the same can be said about this 
point  that  is  x in this  case  x2=0 and also it  lies  on one of the constraint  equations.

 So, that constraint I mean the corresponding slack value is also equal to 0. In this case of  
course, both x1 and x2 are 0. In this case neither x1 nor x2 are 0, but since this point lies 
on  the  intersection  of  those  two  equations.  So,  the  corresponding  so,  the  like  the 
equalities hold anyway that is the corresponding slack variables s1 and s2 they are equal 
to 0. So, total 4 points we are seeing like this where at which are the feel like the basic  
feasible  solutions.

 Now, the what does the fundamental theorem of linear programming tell us it says that 
the true solution must lie in at any of these 4 points. So, we do not really have to go about 
searching every point in the quadrilateral we just have to evaluate these 4 limited points 
which are is of course, easy to do at each of these 4 points we calculate the value of the 
objective function p. and whichever gives them the like whichever point gives the highest 
value of P,  we report  that  to be our solution.  Say for example,  in case of  (0 ,8 ),  the 
solution  is  obviously  32.

 In case of this (8 ,0 ), the solution is 40. In case of (6 ,4 ), we see that this becomes 30+16 
which is 46. and so on and so forth. So, this way like at each of these points we can  
evaluate  the  objective  function  and  whichever  of  these  points  it  gives  us  the  higher 
maximum value we declare that as the solution. So, like we do not really have to consider  
every point in the feasible region it is enough if we consider the boundary points. So, that  
is  what  the  fundamental  theorem  of  linear  programming  tells  us.

 Now, we come to another concept which is known as the Lagrangian multiplier like. So, 
this is you this can be used when we are having equality constraint, but it can also be 
used when we are having inequality constraint. So, let us start with the equality constraint 
case first. So, we want to now we are considering a minimization problem which is not 
really  a  big  deal  because  any  maximization  problem  can  be   converted  into  a 
minimization problem by taking either the negative or the reciprocal. So, we want to  
minimize this loss function f this objective function  f ( x ) such that we have all these k 
equality  constraints  are  satisfied.

 So, h1 , h2 ,…,hk these are all linear it could be non-linear also these are like all functions 
of the variables x note that x can again be like it need not be scalar it can be a vector  
valued variable also. and we want and this is the objective function. Now in this case we 
are like earlier when we are talking about linear programming we are talking about f and 



the h all of them being linear. But in this case we relax that requirement now they can be 
non-linear also. So, now what we do is in the method of Lagrange multipliers we define 
another  alternative  problem.

 So, we basically what we do is  all  these constraints are absorbed into the objective 
function. Now, when we are absorbing we multiply them those functions or constraint 
functions with certain coefficients like this λ1 , λ2 ,…, λk etcetera and these coefficients are 
known as the Lagrange multipliers. So, these are their values are not known to us, but we  
so we have to estimate them also along with the values of x. Once again remember that x  
is  a  vector  or  x  can  be  a  vector  which  is  basically  a  collection  of  variables  like  
x1 , x2 ,…, xn. So, now we have an unconstrained minimization problem with additional 

variables.

 So, like this is the total new objective function we can call it as the augmented objective 
function. So, we now try to minimize this, but there are no other constraints because the 
constraints  have  been  absorbed  into  this.  So,  now  we  treat  it  as  our  unconstrained 
minimization problem and we solve it using either direct method analytical methods or 
using gradient descent. So, now what happens is so, what does that give us it gives us 
basically the stationary points of f  with respect to all  the variables that  is  the partial 
derivatives of f with respect to all the variables that will be equal to 0. So, that is like the 
problem  which  we  are  right  now  trying  to  solve.

 So, now the like there is something known as a Lagrange multiplier theorem. So, what 
does that theorem tell us? The theorem basically tells us that if you are able to solve the  
minimization problem on this augmented objective function which also includes the these 
additional terms as well as the additional variables. So, note that just like in the previous 
case we had additional  slack variables in this  case also we have additional  variables 
which you call as the  Lagrange multipliers. So, we have to minimize this augmented 
function with respect to all of these parameters I mean the or all of these variables the 
initial  variables  as  well  as  the  new  variables  which  are  known  as  the  Lagrangian 
multipliers. So, the what is the approach? The approach is to find the stationary points of 
this augmented objective function f with respect to like all the additional variable with 
respect  to  all  the  variables  including  the  x's  as  well  as  all  the  lambdas.

 And since it is a stationary point their derivative of a capital F with respect to all of these  
variables I mean their partial derivatives will all be equal to 0. So, that is what we are 
trying to find such stationary points. and the this Lagrangian multiplier theorem is telling 
me that these stationary points of these f they will also be the solutions to the original  
minimization problem small  f.  That is  I  just  construct  a new function combining the 
original objective function with all the constraints and I calculate the stationary points of 



this new function f ( x ). So, remember that stationary function means what it means that 
the  derivative  disappears  derivative  equal  to  0  with  respect  to  all  variables.

 So, that can happen at maxima it can happen at minima it can also happen at the saddle 
points. So, we are not claiming that we have found a minima that is we have found a 
minima  of   capital  F.  We  have  only  found  a  stationary  point  of  capital  F,  but  the 
Lagrangian multiplier theorem is telling me that that is enough. Using that solution you 
can find the value which minimizes the original problem f ( x ) also. Now, you also involve 
these  kinds  of  inequality  constraints  in  the  objective.

 So, earlier we are having only these equality constraints like this. Now, let us say we also 
have the inequality constraints. there is a small error here the g ( x ) will be less than equal 

to 0 those are the inequality constraints and h ( x ) will be equal to 0 that is those are the 
equality constraints  which we earlier  also had.  So,  also there will  be any number of  
inequality  and  equality  constraints  like  in  this  case  we  had  k  number  of  equality 
constraints similarly we can have l number of inequality constraints also. So, now when 
we are constructing the augmented objective earlier also the what we did the same thing 
we do once again for the equality constraints we just like earlier we incorporate them into 
the like we that is we merge them with the original objective function which is  f ( x ).

 We merge them by multiplying them with a Lagrangian multiplier and adding them. 
Now, in case of the other variables that is the g ( x ) is less than or equal to 0 pardon the 
typo  here.  So,  like  those  are  also  converted  into  equality  constraints  as  earlier  by 
introducing the slack variables. So, we so, like the slack variables is something which 
converts those equal inequality constraints into equality constraints and  So those new 
equality  constraints  which  we  are  obtained  from  the  inequality  constraints  we  like 
incorporate those also into the augmented objective function and corresponding to them 
also  we  have  some  Lagrange  multipliers.  So  now  we  have  two  sets  of  Lagrange 
multipliers one with respect to the inequality constraints and another with respect to the 
equality  constraints.

 So, now what do we do? We once again have to find the stationary points of this capital  
F. Now we have so now we are the solution to the original problem that is minimization 
of  small  f  is  characterized  by  certain  criteria.  So,  which  are  known  as  the  KKT 
conditions. So, what are these conditions? So, first of all the gradient of f we should be 
equal to 0. So, that is the stationary point of this augmented Lagrangian which we had 
earlier  also.

 So, that is unchanged that is we have to calculate the derivative it must be such a point at 
which the derivative of capital F ( x ) vanishes with respect to all the variables which are in 



question. Then secondly h ( x ) should be equal to 0 and g ( x ) should be less than or equal 
to 0 which basically means that all the constraints the equality constraints as well as the  
inequality constraints they are all satisfied. The third criteria that must be satisfied is 
known as the complementary slackness criteria. This is for the slack variables s j which 
we have now considered. So, that is basically that the μ ⋅ s should be equal to 0 that is the 
like  this  relation  should  hold.

 What is μ? The μ are the Lagrangian multipliers corresponding to the equality constraint. 
what are the s j's? s j's are the slack variables for the corresponding inequality constraint. 
So if  we the complementary slackness  criteria  is  basically  saying that  like we if  we 
multiply these pairs of things that is basically this thing and this thing and we add them 
up over like all the inequality constraints that were there we will get 0. So, this is an 
important criteria which is may not be that obvious, but this is important. So, this is a  
complementary  slackness  criteria  and  finally,  the  sign  condition  on  the  inequality 
multipliers.

 So, the μ all these μs they must be non negative. So, any so like as already mentioned I 
have this f ( x ) this is the augmented objective function. So, we find the stationary points 
of all these we do it by calculating the derivative with  all of these variables I mean the 
original x variables the new the Lagrange multipliers lambda's the Lagrange multipliers μ
's as well as the slack variables. So, we find the those stationary points now among the 
stationary points the true solution  that or those for which all of these things are satisfied. 
And what is the true solution? The true solution is such a solution which minimizes f ( x ) 
such  that  all  these  constants  are  also  satisfied.

 So, this is how we solve with Lagrange multipliers. Apart from these there are also a set  
of  methods  which  are  known  as  the  interior  point  methods  and  the  exterior  point 
methods. So, the basic idea of interior point method is you start with a point which is 
within the feasible region that is which satisfies all the constraints even though it need not 
be optimal with respect to the objective function. But, now what do we do we perturb the 
solution towards the optimal that is maybe by using something like gradient descent ok. 
So, that is we try to minimize or maximize the objective function with respect to the 
Now,  whenever  we move to  a  new from the  current  solution or  the  from the  initial 
solution we move to a different solution with the hope of improving or minimizing our 
objective function. But the question is as we move to the new solution is it still feasible or 
have  we  somehow  overshot  the  this  feasible  region.

 So, we have to make sure that as we are whenever we are updating our position that is 
from the  initial  position which may be  random to  we are  trying to  move towards  a 
solution which lies or which minimizes the objective function at every candidate solution 



we have to check whether the constraints are satisfied or not. So, that is of course, a 
tedious task suppose we find that the constraint is not satisfied then what will we do we 
cannot  backtrack.  So,  the  alternative  is  we  introduce  something  known  as  a  barrier 
function that is once again we are we look for an augmented  objective function. So, we 
have  our  original  objective  function  to  that  we  add  something  called  as  the  barrier 
function which takes a high value which is outside when for points outside the feasible 
region and low values for points which are inside the feasible region. So, that means, the 
presence of that barrier function will make sure that we at whichever point we are going 
we  do  not  go  outside  the  feasible  region.

 Why? Because now we are trying to like minimize both the this barrier function as well 
as the original objective function. So, that is we are considering a linear combination of 
them. So, if one of like if we somehow step out of the feasible region, then the objective 
then the barrier function will become very high. So, the augmented objective function 
that  will  also  become  very  high.

 Hence the algorithm will prevent me from going to such a place. So it will the algorithm 
will force me basically to stay within the feasible region so that none of the constraint is  
not violated.  So this is  basically what the procedure looks like.  So you set  an initial 
tolerance value epsilon and a decrease factor  β as well as an interior starting point  xl 
which satisfies all the constraints and an initial μ. So, like we will understand this later. 
So, now we formulate this augmented problem as I already said f ( x )+μB ( x ) where μ is 

this  factor  and  B ( x ) is  the  barrier  function  which  I  mentioned.

 So, now use xi as the starting point and let the optimal solution be xi+1 that is this is the 

thing this is augment instead of minimizing f ( x ) you minimize this thing this new thing 

to get a candidate solution xi+1. Now if this happens if this condition is satisfied then you 
stop else you update the μ. So, remember that β is a decreasing factor so as I multiply so 
μ decreases. Now what is the point of decreasing μ or what is the point of μ at all  μ is 
basically  telling  you  how important  the  barrier  function  it  is  to  maintain  the  barrier 
function.  It  is  of  course very important  to like the barrier  function is  very important 
because in case I overshoot the feasible region then it is the barrier function which alerts 
me  which  does  not  let  me  overshoot.

 So, like I so high value of  μ basically means I am giving a lot of importance to the 
barrier function. that is I am like if I try to escape the feasible region this part will be  
because μ is already high. So, this part will become really high and like it will not like the 
solution will not be accepted as it will not be able to minimize this augmented function. 
So, like so I should start with a high value of μ, but if I start with too high value of μ that 
means, I will be always be present in the this thing the feasible region that is true, but I 



may  not  be  minimizing  the  f ( x ).

 So, once it is ensured that I am inside the feasible region. I can actually reduce this μ a 
little  bit  I  can  give  a  little  less  importance  to  the  barrier  function  and  a  bit  more 
accordingly a bit more importance to the original objective function f x. So, that I can like 
achieve the best of both worlds that is I am inside the object the feasible region as well as 
I am not as well as I am trying to find the I am trying to find as low value of f as possible. 
So, an example of this is given I am not going into the details of the example, but you 
will see that the this μ is decreasing step by step. And you will also see that this term this  
is also decreasing step by step that means what that means that. I am like I am gradually 
approaching the minima and the final convergence is obtained at this stage 0 where x has 
a  certain  value.

 So  it  can  be  seen  that  like  if  you  go  back  to  the  original  problem then  you  will  
understand that these values they indicate that the constraints are all satisfied and that is  
where the minima has been obtained. The other approach is just the opposite of it that is 
the exterior point methods. Here the idea is you basically start at an initial point which is 
outside the feasible region, then optimize with respect to the objective function plus the 
constraints, then you gradually increase the constraint weights till they are satisfied and 
you this automatically pushes the solution towards the feasible region. So, this is like this  
is called an exterior point method because here you are the original value with at which 
you are starting the original solution at which you are starting it indeed minimizes f x 
even though it may be outside the feasible region. So, now you try at every stage you 
now  try   bring  that  it  closer  to  thefeasible  region  like  with  the  help  by  gradually 
increasing  theequivalent  of  the  barrier  function.

 Earlier we had the barrier function here we do not call it as a barrier function, but we like  
call it as a like as the constant, but we are in this case we call it as a penalty function. So, 
when we are outside the like exterior point that is since we are considering exterior  So,  
like it is we are out that is we are violating some of the constraints we are outside the  
feasible  state  that  means this  is  quite  high.  Now, we try to  progressively reduce the 
violation by bringing the solution closer and closer to the feasible region. So, that is what 
is known as the exterior point method. So, this is the algorithm which unfortunately I will 
not be able to explain in detail due to the lack of time, but I hope you will be able to 
understand  it  especially  when  you  see  this  numerical  example.

 So, here also you will see the only difference will be that in this case we will see that we  
are  I  mean like  that  is  as  we are  approaching the  optimization  like  the  like  we are 
reducing the sorry we are increasing the μthat is we are increasing the importance of the 
penalty function and as a result this penalty function is gradually increasing. Unlike in  



like in the previous case where the like where the aim was to decrease the μin this case it 
is important to increase the μ. So, like basically we discussed to like several approaches 
of  constraint  optimization.  So,  we  started  off  with  the  simple  problem  of  linear 
programming where all the equations and constraints are  linear in nature and we saw that 
it  can  be  solved  with  the  help  of  this  fundamental  theorem of  linear  programming.

 There are also efficient algorithms like the simplex algorithm which we did not study 
here. Apart from this we can also have more general settings where they are non-linear 
and for such cases we can take the help of Lagrange multipliers. Alternatively we can 
utilize the interior or exterior point methods. So, with that we come to this at the end of 
this topic on optimization. So, in the next lecture we will deal with some other topics. So,  
till then everyone please take care and stay well. See you soon. Bye.


