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 Hello everyone. Welcome to this course on Artificial Intelligence for Economics. I am 
Adway Mitra, an Assistant Professor at Indian Institute of Technology, Kharagpur. And 
today  we  are  with  starting  with  our  lecture  6,  the  topic  of  which  is  Unconstrained 
Optimization. So, so far we have been seeing some of the basic applications of artificial  
intelligence in economics. We have seen some example or examples of many tasks in 
economics  in  which  artificial  intelligence  can  be  applied.

 From  now  on  we  will  be  discussing  more  about  the  methods  about  the  artificial 
intelligence themselves. and at the same time we will try to link every each of those 
methods to the domain of economics. So, today's the methods which we are going to 
discuss  today  is  the  method  of  optimization.  Now,  so  today  we  will  first  learn  to 
formulate an optimization problem, we will learn the concepts of convex and non convex 
optimization.

 We will understand that what is unconstrained optimization and how it can be solved 
using the algorithm called gradient descent and we will also understand what is multi 
criteria  optimization  or  multi  objective  optimization  and  Pareto  optimality.  So,like 
optimization  problem let  us  start  with  an  optimization  problem in  economics  a  very 
simple problem. Let us say I have a budget of M there are two sector let let us say I am 
the I am the government let us say that I like I have some budget which I want to allocate 
to to different sectors. As of now let us say that there are only two sectors available in  
front of me let us say education and health care. So, I the amount of budget I have I have 
to invest part of it to education part of it to health care let us call them as  S1 and  S2.

 Now, if I let us also assume that if I invest something in any particular sector, I will get 
some  benefit  out  of  the  sector.  Now,  all  benefits  in  economic  supports  cannot  be 
quantified like that like for example, that is how do I quantify what is the outcome of the 
healthcare sector or the education sector or let us say defense sector and things like that.  
So, like there are of course, some indicators economy which are which can actually act as 



proxies to measure the performance of every sector. Let us say what is the average or 
what is the number of people who are getting college degrees per year. So, that is that 
may be considered as one performance measure of the of the education sector in case of 
health  care.

 let us say the overall life expectancy is one indicator of the performance of the health 
sector. Like similarly in case of like defense or the law and order the number of violent 
crimes or terrorist attacks that are taking place that is another performance measure for 
the defense or the law and order sectors and so on and so forth. So, let us say that each of 
the sectors which we are considering they have some kind of functions using which like 
which tell us something about the performance of those sectors. And it is like let us say 
that the we make an assumption that the performance of that sector is a function of the  
amount of investment I make on it. So, like let those two functions be called as f 1 ( x ) and 
f 2 ( x ).

 Now, we make a further assumption here that  f 1 ( x ) and  f 2 ( x ) these are two function 
they both map to the same domain. So, that we are and that domain is the domain of real 
numbers. Now, because both of them are mapping outcomes are measured in terms of 
real numbers, I can actually consider adding them up. That is if I want to understand what 
is the  net outcome of my investment of these two sectors, then from each of the sectors I 
can have their individual performance measures  f 1 ( x ) and  f 2 ( x ). And because I have 
made an assumption that they like both of them lie in the say real space, so I can add  
them  up  also.

 So, that like I define what is known as my utility function. So, let us say f 1 ( x )f 2 (M−x ). 
So, the total budget M I have divided as x in sector 1 and M−x in sector 2. So, the net 
outcome which I am getting I call that as utility function which is f 1 ( x )+ f 2 (M−x ). So, 
what  is  my  task?  My  task  is  of  course,  to  maximize  the  utility  with  respect  to  x.

 So, we are considering that f 1 and f 2 both of them high values are good if like if f 1 that 
is not necessarily the case. For example, like if the indicator is function for defense sector 
is let us say number of terrorist attacks. So, clearly I want that to be down. So, a low 
value of that is good, but in case of say in case of the health care sector if we are talking  
about life expectancy then higher the better. number of graduates per year the higher the 
better.

 So, in this case we are considering that f 1 and f 2 are both higher the better. If that is not 
the case then also no worries we can simply take the negative or reciprocal of that. So,  
what is my task? My task is to choose the value of x such that  F ( x ) is as y as high as 
possible. Now, so this is the basic optimization problem. So, we have to discuss how to 



algorithms  to  solve  problems  like  this.

 So, lot of it depends on what the nature of these functions f 1 and f 2. So, let us consider 
with the simplest case that both of them are smooth and differentiable function and this x 
is continuous. Of course, in the way we have formulated this x has got to be continuous. 
But let us say let us say that actually need not be because if it is just money then we know 
that a money is only discrete, but we can let us just make an assumption that the money is 
continuous that  is  I  can spend any real  or fractional amount of money in one of the 
companies  and  the  rest  in  the  other.  So,  in  that  case  our  assumption  is  that  x  is  a  
continuous  variable.

 So,  in  if  that  is  the case then we can simply calculate  the derivative of  this  utility  
function F ( x ) which will of course, all week also be continuous and differentiable and we 
equate it that to 0 and then solve for the optimal value of x. So, this is basically just  
school high school level calculus. Now we can progressively make the problem more and 
more complicated. Let us now consider multivariable case also. So, let us say that like we 
can like have some additional constraints like I am not it is not necessary for me to spend 
the entire amount x I mean the entire budget M I should need not spend on both of these  
sectors.

 I  can  actually  spend a  smaller  amount  also.  So,  in  that  case  my utility  function  is 
F ( x1 , x 2 )=f 1 ( x1 )+ f 2 ( x 2 ) as earlier, but with the constraint that x1+x 2≤M . So, note 

that earlier I was saying  that  x1+x 2=M . So, that instead of writing  f 2 ( x 2 ) I could 

simply write  f 2 (M−x ), but in this case I like  x1+x 2 I am specifying is less than or 
equal  to  M.  So,  like  we  have  higher  degrees  of  freedom  in  this  case.

 In the previous case I had only 1 degrees of freedom meaning as soon as I am changing x 
or setting a value of x the value of the other investment is also automatically fixed. But in  
this case both of them can vary, however the only constant is that x1+x 2 their sum must 
be within my budget. So, we can try to find solutions of this problem as I said we will 
find some algorithms. So, like we will find those values of  x1 and  x 2 for which this 
utility function is as high as possible. So, that is that will those values will comprise my 
optimal  solution.

 So, note that there might be different combinations of x1 and x 2 for which we can reach 
the same value of the of this utility function f. So, like some of those values they may be 
the optimal value, some of them may be the suboptimal value and so on and so forth. So, 
like here you can see that we can like plot the those solutions which are  which give the 
same value of the utility function we can just plot them together as curves and we call 
these as indifference curves. So, in this case let us say that the two variables are x1 along 



the x axis and x 2 along the y axis I have plotted. Now let us say that for a the functions 
f 1 f 2 are such that if both of them are 2 then the value of the utility function f that is 
equal  to  4.

 Similarly, if the first one is x1 and x 2 is 4, then also the value of the utility function is 4. 
On the other hand, if it is 5 3 or 3 5, then in both cases the utility function is equal to 15.  
So, like we can see that as long as like we are on this curve the exact value of the x1 and 
x 2 the variables which we are taking does not seem to make a difference as far as the end 
goal  is  concerned.  So,  we  can  say  that  these  solutions  in  some  sense  they  are  all 
equivalent to each other. So, like and like I am indifferent to whether I choose 3 5 or 5 3  
because  both  are  giving  me  the  same  outcome.

 Now, so that is for like in so these kinds of curves these are known as the indifference 
curves.  Each indifference curve is  associated with one particular  value of  the of  this 
objective or utility function. Now, how to solve an optimization problem? So we usually 
start  by casting the optimization problem as minimization.  Now earlier  I  was saying 
maximization of the utility function. Now there are certain types of functions which we 
would like to maximize and certain other functions which we would like to minimize.

 But in general when we are formulating it mathematically we follow this convention that 
like we treat it as a minimization problem. If the actual problem is maximization then no 
problem we simply fits and fix flip the signs that is if I want to maximize  F ( x ) that 

means, I want to minimize minus of F ( x ). So, I convert it to a minimization problem like 
that.  So,  like so if  we remember the concept  of  linear regression or the least  square  
regression. So, like we have the squared error loss function that is we have values of the  
independent  variable  x.

 and we have the values of the target variable or dependent variable y. So, I just try to  
express the dependent variable y as a function of independent variable x the function is a  
linear  function  and I  try  to  minimize  my least  square  error.  So,  so  this  is  like  so  I 
basically I am trying to find the parameters w and b for which this objective function or 
the in this case it is called as the square the least square error this function is as low as 
possibility I want to minimize it. So, I this is an optimization problem with respect to the 
parameters w and b. So, I just like I can see do it this problem quite easily by calculating 
the gradients of this loss of this least square loss or least square error and I can equate  
those derivatives to 0 that is I calculate the derivatives with respect to both w and b.

 So, I get like those are partial derivatives each of them are equated to 0. So, that I get  
two equations  I solve those equations simultaneously and I get closed form expressions 
of W and B. So, that is what we had learnt to do in high school for solving this problem 



of linear regression. But in this case or in many cases this analytical approach based on 
calculus does not work. Reasons for not working it might be that the utility function is 
not even differentiable or it might be that the derivative equations which we get I mean 
the  two  simultaneous  equations  which  we  got  using  the  partial  derivatives.

 it is possible that we cannot solve them like simultaneously. So, in such cases we need 
the what is known as the numerical approach. Now, what is the numerical approach? So, 
this is based on like approximation algorithms like these are all iterative algorithms. So, 
iterative algorithm it starts with an initial solution which is of course, not the correct  
solution, but then at every step we keep increasing which we keep improving the function 
one step at a time and try to gradually move towards the optimal solution. So, this is what 
the  gradient  descent  bed  optimization  looks  like.

 You start with any initial point x 0 and next step you move to a point x1 which is equal 
to  x 0 -  a small term a small quantity a usually a positive quantity multiplied by the 
derivative of that function at x naught at the say at the its current value x 0. So, that gives 
us a new value of  x1 now you like you check whether  x1 is the same as  x 0 or it is a 
different from x 0. If it is a in general it will be different. So, if it is different you just  
continue and you keep on doing the same process over and over till you see that x1 and 
x 0 are the same. So, like and when you are doing the moving to the next iteration then 
you next you forget the previous current value x 0 and you just remember the new value 
x1.

 You consider you set x 0 to x1 and then again you do the same process. So, in this like 
you just keep on doing this in iteration after iteration until this condition is satisfied. So, 
like this like this is the like as you can understand a very simple algorithm where you just  
need to calculate the derivative of x this will work even if the variable x it is a vector  
valued variable.  So,  like in many cases in real  life we will  see that  it  is  a the input 
variable the dependent variable x it is a vector valued variable. So, we can calculate the  
derivative of the loss function also it will it will be basically the vector of the partial 
derivatives  with  respect  to  each  of  the  variables  in  the  vector.

 And the optimization like for vector x the optimization for each of the dimensions of the 
vector it can be decoupled also from the rest. So, let us say that the vector x it has d 
dimensions  ( x1 , x 2 ,…, xd ). So, I first like I can minimize  x1 while holding the other 
variables x 2 etc. I am holding their variables as their those variables at fixed at a current 
value at our then after that I am once I have like perturbed the value of x1 then I move to 
the next vector dimension x 2. And now I again apply the gradient descent to descent to 
update its value while holding the other value like the other variables that is x1 x 3 x 4 ... 
xd they  are  constant.



 After that we update x 3 holding all other variables as constant and so on and so forth. 
So, just to see an idea of why it will it should work let us consider a very simple one  
dimensional  function  is  x2−4 x+4.  So,  x  where  x  is  a  real  number.  So,  this  is  the 
function which we want to optimize. So, we can like we can easily understand that the  
solution  is  of  this  is  x=2 that  is  the  point  at  which  it  will  it  will  be  minimized.

 Now, to apply the gradient descent we calculate its derivative with respect to x which is  
2 x−4. and we that a parameter a which we call as a learning rate we set it to 0.1. Now, 
we will see the significance of this learning rate. Now, let us say that our initial estimate 
of  the  solution  is  5.

 Now, of course, that is wrong. So, like at 5 the this function F ( x ) it is quite far away 
from its smallest value at x=2 its value will be equal to 0, but at 5 it is certainly not 0. In 
fact, it is closer to 10. But now what we will do is so a 5 is my x 0 now I will calculate 
what is  x1. How I will calculate it? So, I can just like calculate the derivative at my 
current  value  5.

 So, 2×5 is 10 - 4 is 6. So, the derivative is 6 I multiply that with the learning rate 0.1.  
So,  that  is  0.

6. and then my next x 1 that becomes 5 minus 0.6 which is 4.4. So, I move to the point  
4.4  and  I  find  that  the  value  of  f  has  decreased  that  is  F (4.4 ).

we can understand from this diagram that F (4.4 ) will definitely be lesser than F (5 ). So, 
you can say that my task is to minimize f. So, I have moved a little bit towards that a. 
Now, I keep on doing the same thing after a few iterations maybe from 4.4 I have come  
closer to 3 and maybe after still further iterations I have come very close to 0 itself and  
finally,  I  have  just  reached  xopt which  is  x=2 at  the  value  at  which  F ( x )=0.

 So, when that happens when I have reached the optimal then I will see that when I try to  
change it further then x1 like that I find that it is not changing that is. So, in that case I 
would understand that I have reached the local minima. So, why will it why will that be 
the case because when I have reached the minima then the derivative will of course, be 
equal  to  0  because  we know that  it  is  at  saddle  points  like  maxima minima etc.  or 
inflection points the derivative vanishes. So, x1 is going to be just x 0. So, then we have 
our  iterative  process  has  come  to  an  end  and  we  have  reached  a  minima.

 So, that is that is our solution. So, does it always converge? So, first of all does it there  
are  two  questions  like  first  of  all  will  it  necessarily  converge  and  secondly  will  it 



converge at the minima. So, it can be like shown that if the function is such that it has 
only one minima then definitely it will converge there if at all it converges. it cannot  
converge at like if it is a like if it is function with a single minima then it cannot converge  
at any non minima point. However, like the question whether it will at all converge or not  
that  is  that  really  depends  on  the  choice  of  the  learning  rate  A.

 So, so what is the role that the learning rate A plays. So, basically it governs by how far I 
am moving from the current value to the next values. So, by the way so this explains the 
term gradient descent. So, I am currently here I just feel that which way is the gradient of  
the function that is  when I am at the current value I can either increase or I can decrease  
should I increase or should I decrease. So, I that the decision that decision depends on 
what is the direction in which the function decreases or rather it is slopes the function 
slopes in which direction. So, obviously, I can understand that if I decrease the value of x  
here  then  the  function  will  decrease.

 So, I  must decrease the value of x.  If  instead of the initial  point between 5 it  were 
something like let us say minus 1 then it would be the reverse then we would see that 
increasing x would decrease the function. So, we would have moved in the direction of 
increasing the value of x, but the question is I am increasing it in decreasing it in one 
particular direction, but by how much. So, that is governed by the learning rate a higher 
the learning rate the bigger steps I make in the direction of the  So, like I can either  
choose a small value of a or a big value of a both have pros and cons. If I choose a big 
values of a then there is a risk that I may jump over the optimal solution. Let us say my 
current  with  my initial  value  was here  now I  let  us  say I  understand that  I  have to  
decrease the function because the gradient is the in that direction, but the step which I  
take  is  so  large  that  I  end  up  here.

 And like here that is I have crossed the minima. So, now, again when I see I see that the 
gradient is in this direction that is I must increase x. So, I increase x, but by such an 
amount that I come somewhere here that is I have again overshot the minima. And so, 
like I keep on just moving from this side to that side, but I am never able to reach the 
minima. So, that is one way in which I may just fail to converge all together that is I like 
if I am choosing a large learning rate then the algorithm may not converge at all. On the 
other hand if I take a small learning rate then it will converge definitely, but it may take a  
lot  of  time  it  may  take  a  lot  of  steps  before  I  can  reach  the  minimum.

 Now if  the as I  already said that  if  the function is  convex then we will  necessarily 
converge there if it is not convex then we will converge at any minima. In the next slide I  
will explain what is meant by convex and non-convex functions, but before that I must 
also add that   there  is  an alternative to  this  gradient  descent  which is  known as  the 
Newton Raphson's method. So, that is similar only the only however, the difference lies 



in this update state. Here I like calculate the that is instead of multiplying the gradient  
with the learning rate, I multiply the current value of the function with inverse of the  
gradient. So, like so this has faster convergence and the learning rate parameter which we 
already discussed is a bit problematic that is gone, but its performance on the other hand 
it  depends  on  the  properties  of  this  of  this  thing.

 So, note that if x is scalar then or one dimensional then calculating this is not a problem 
at  all  and this inverse simply means the reciprocal.  So,  in that  case this is  Newton's  
reference method is good and it has no problems. On the other hand if it is a vector if x is  
vector valued as we discussed earlier then this derivative this is basically the Hessian 
matrix and I  have to calculate the inverse of it  and calculating the inverse of that  is 
sometimes a dicey issue. So, like in case of vector valued function this Newton Raphson's 
may  have  some  computational  problems.

 Now, I mentioned the term convex function earlier. So, what is the convex function? So, 
convex function is defined like this that the value of the function at any x which lies let us 
fix two points x1 and x 2 first on which the function is defined. Now, so like at x1 we 
have the function value F ( x ) at x 2 we have F ( x 2 ). Now, you consider any point which 
lies between x1 and x 2 so like this. So, in that case the value of the function at that point 
F ( x ) will be less than or equal to the straight line which was joining these two points  

F ( x1 ) and F ( x 2 ). That is like if we assume a linear function which is connecting these 

two  points  x1 and  x 2.

 And convex function f is such that its value will always be less than the linear function  
between those two points.  Now, this is  the definition of a convex function it  can be 
shown that a convex function has a unique minima. And all the numerical methods like 
gradient descent or Newton Raphson's will converge there if they at all converge. We 
have already seen a situation where it may not converge at all, but if it does converge it  
will definitely converge at the local minima only it cannot converge anywhere else. But a 
non-convex function that can have multiple minima that is which we call as the local 
minima.

 So, we are all concept familiar with the concept of local and global minima anyway. 
Now when we are solving a numerical method, it  can converge to any local minima 
which is closest to the initial point. Where it will, if there are multiple minima or multiple  
local minima, these numerical methods will converge to any point which is closest to the 
initial point. So our approach will be to start descent from multiple initial points. Find the 
local minima corresponding to all of them and simply find the minima of those local 
minima.



 If we do this for like a wide enough variety of initial points, then hopefully the minima 
of those local minima will  be equal to the global minima itself.  Now, we come to a 
different problem this is called as multi objective optimization. So, so far we have been 
considering that there is one objective function or the utility function which we are trying 
to minimize, but now let us say that there are multiple objective functions. So, let us 
consider a simple problem that we problem which many of us face in daily life. So, let us  
say that I want to fly from city A to city B for which there are different flights of different 
airlines.

 Now, those flights they have they take different times and they have each of them have 
different costs in thousands. So, this is the table of the time taken and the cost charged by  
each of these airlines. So, now, obviously, my aim is to minimize the time of flight as  
well as the cost of the flight. So, which do I choose? So, here from this table we can make 
certain  observations.

 Let us look at these two airlines Indigo and Go Air. So, Indigo definitely takes less the 
time than Go Air 2 versus 3, the cost of the both the flights is the same. So, we can say  
that like between Indigo and Go Air I will definitely prefer Indigo because the costs are  
the same and I am gaining in time. but if you consider these two pair Go Air and Vistara  
between them Go Air costs Go Air is faster than the Vistara it takes less time, but its  
charge is also more. So, in this case there is no obvious solution in front of me time if I 
consider time then I should then I should consider Go Air, but if I consider cost then I  
should consider  Now, if you consider this set, if I consider this Air Asia, Air Asia is here  
and  if  I  consider  it  with  this  set  of  Jet  Airways,  Akash  and  Kingfisher.

 So, let us say what happens. Air Asia versus Jet Airways both take the same duration, 
but the cost is least in case of Air Asia. So, I will definitely prefer Air Asia with over Jet 
Airways, the same holds for Air Asia and Akash. If I consider Kingfisher, then also I am 
reaching the same conclusion. In case of Kingfisher, in fact, it is the conclusion is even 
clearer.

 If I use Air Asia, I am doing better than Kingfisher on both aspects. So, now this brings 
us to the notion of dominance in case of multi objective function. So, I say that a solution  
x1 dominates another solution x 2 assuming that it is a minimization problem if like for 

every objective function like fi ( x1 )≤ fi ( x 2 ). that is I am considering that smaller is better 
and there exists at least one objective function for which the solution x1 is better than the 
solution  x 2 right.  So,  like  if  you  if  we  come  back  to  the  air  the  airlines  example.

 So, we can if you consider  Indigo versus Go Air let us say. So, like we can say or rather  
or  if  we  or  as  we  just  discussed  right  now Air  Asia  and  Kingfisher.  So,  Air  Asia 



dominates Kingfisher because like Air Asia is as good as is in fact better than Kingfisher  
on both accounts. Air Asia also dominates Jet Airways because Air Asia is at least as 
good as Jet Airways on both accounts also there is at least one account on which Air Asia 
is  strictly  better  than Jet  Airways.  So,  I  can say that  Air  Asia  strictly  dominates  Jet  
Airways. So, now it is also possible that there are two solutions x1 and x2 which were 
neither  dominates  the  other.

 Like if you consider this case the Air India versus Viztara then Air India is sorry Go Air  
versus Viztara. Then Goyer is better than Vistara with respect to time, but Vistara is 
better  with  respect  to  cost.  So,  there  is  like  so  we  cannot  say  that  either  of  them 
dominates the other. That is one is better on one account, the other is better on the other 
account.

 So, there is no dominance. So, now I will say that any solution x that is any choice of 
airlines which I can make in this case I will call that solution as Pareto optimal if it is not  
dominated by any other solution that  is  you cannot  find any other solution which is 
strictly better than this. So, note that here I have discussed like assuming that it  is a  
minimization problem, but it also works like if I am considering a maximization problem 
or even a mixed problem where one criteria F1 needs to be maximized another criteria f 2 
needs  to  be  minimized.  So,  if  you  look  at  this  diagram  we  can  say  that  0.

1 dominates 0.2 why because the x like with respect to f 1. The point 1 is definitely better 
than point 2 because f 1 needs to be maximized, but with respect to f 2 also 1 is definitely 
better than 2 because f 2 needs to be minimized. So, 1 dominates 2. Similarly, it can be 
shown that 5 dominates 1 because with respect to  f 1, 5 is definitely better than 1 with 
respect to f 2 both are equal. So, like we can say that 5 dominates 1. but if you consider 1  
and 4, then there is no dominance because 1 is better than 4 with respect to f 2, but 4 is 
better  than  1  with  respect  to  f 1.

 So, a solution such a set of solutions which are not dominated by any other solution is  
called as a  optimal solutions. The non-dominated set of all possible solution that is called 
as the Pareto optimal set. So, we can say see that if you consider Indigo, SpiceJet, Air 
India and Air Asia in this table, you will see that like none of them dominate each other. 
So, they like furthermore none of them is dominated by any other of the airlines also.

 So, these 4 they form a Pareto optimal set. In fact, since they are not dominated by 
anyone else then we say that it is a Pareto optimal set of rank 1. Now, similarly among 
the things which are left among the remaining ones, so they are so these are dominated by 
the Pareto optimal sets in this case Indigo, Spice Jet, Air India and Air Asia. Now, if you 
consider these three cases,  now they do not  dominate each other plus they dominate 
whatever  is  remaining  such  as  Akash  and  Kingfisher.  So,  these  three  they  do  not 



dominate each other, but they dominate the remaining ones. So, in that case we can call 
them as the dominant set of rank 2 that is if you once you take away the Pareto optimal  
solution or the dominant set of rank 1, the next best set of solutions that is called as the  
rank  2.

 Similarly, we can define rank 3 also and so on and so forth. Now, we can define like we. 
So,  clearly  there  are  multiple  Pareto  optimal  solutions  are  possible  to  every  multi  
objective problem. The boundary defined by the set of all such problems in the objective 
function space when they are mapped to the  space of the objective functions that is 
known as the Pareto optimal front. So, let us say this is the space of solutions. So, here 
x1 and  x 2 there are two like let us say that it is there are two variables  x1 and  x 2.

 So, from that space at every point of the at every solution I can apply the functions f 1 
and  f 2. So, I can find a new point in the space defined by  f 1 ( x ) and  f 2 ( x ) right. So, 
Like we can say that corresponding to this particular point of x1 and x 2, I can calculate 
f 1 and I can calculate  f 2.  So the  f 1,  f 2 pair of corresponding to this point is then 
mapped to this point.  Similarly, the  f 1 and  f 2 pair of corresponding to this point is 
mapped to this point and so on and so forth. So, like it can like it is not very difficult to 
understand  that  the  points  which  are  lying  on  the  boundary  of  this  region.

 So, like this is basically the like that is corresponding to all of these solutions, this is the 
set  of  values  we  obtain  in  the  function  space.  Now,  it  is  difficult  not  difficult  to  
understand that the edge of this or the boundary of this region will be defined by these 
Pareto optimal solutions. So, what the when we are trying to solve a multi  objective 
optimization our  essential  aim is  to  come up with  a  set  of  Pareto  optimal  solutions. 
However, like we like we may want those Pareto optimal solutions to be as diverse as  
possible that is where each solution is good with respect to a different objective. So, like 
among these Indigo, Spicejet etc. like they are all Pareto optimal, but I may like I may 
want  diverse  like  diversity  among  them.

 Let us say that Indigo is very good with respect to time even though it is may not be that  
good with respect to cost. On the other hand Air Asia may be the exact reverse it may be 
very good with it may be very cheap, but not so good as far as time is concerned. Both of 
them  are  parato  optimal  solutions,  but  they  are  they  these  two  they  provide  some 
diversity that is one is providing like very good result with respect to one criteria or one 
objective another with different objectives.  So, like this is the aim of multi  objective 
optimization. How do I solve it? And one way to solve it is by attaching weights to all of 
the objective functions so that we can like add them up and convert it to the kind of 
functions  which  we  had  earlier.



 So, like remember consider that if you remember the original budget constraint problem. 
So,  Now, like we I am trying to optimize both of them, but like I just have some like I  
make prioritize one over the other. So, these kinds of priorities I may represent by these  
kinds of weights and then I  can add them up as I  was doing in to define the utility 
function in  the  budget  case.  So,  this  solution concept  of  Pareto  optimal  solutions  in  
economics  it  is  very  important  in  the  domain  of  resource  allocation  among multiple 
sectors that is how to divide a budget among multiple sectors. So, that the return is from 
at least some of the sectors should be good in better than in terms of others. It is also 
useful in like in trade where we were trying to divide like or we are trying giving the task  
of  producing  different  goods  to  different  countries.

 Any country should grow or should produce that goods which it  is able to do more  
efficiently and more cheaply than the others and then it can trade. Similarly, in case of  
income distribution  I may transfer the resources from a wealthy individual to a poorer 
individual in such a way that it the overall social welfare is improved, but the we cannot 
say that the wealthy individual becomes worse off than they were earlier similarly in case 
of social welfare maximization. So, with this we come to the end of this lecture 6 on 
unconstrained  optimization.

 In the next lecture, we will discuss constrained optimization. So, we will meet again. So,  
till then please take care and stay well. See you soon. Bye.


