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 welcome to ah the second lecture of on principle component analysis in the first lecture 

we had ah dealt with or I try to give you a glimpse of the mathematical prerequisites the 

mathematical tools which ah we would we would employ in ah this lecture so now that 

we are armed with them lets begin Let's start with, before we get into the technique, let's 

start with a little story of an early stage financial institution. Imagine a financial 

institution which is lending out small loans in the rural areas. And it has just started off. 

And what is it that a financial institution, a lender is usually bothered about? minimizing 

defaulters, be it large banks or be it smaller financial institutions who are lending out 

money, default is what people are bothered about and any such institution would want to 

look at customer data and try to understand what might lead to defaulting and thereby try 

to come up with red flags or red flag a customer who is likely to be a defaulter. So let's 

take a quick look at how such a data set might look like. So let's say something like this. 

 

 do not get bogged down by the code that is not important. So, let us say every customer 

is characterized by spending, advance payments, delay in the proportion of what they 

have to pay, current balance, credit limit so on and so forth. And at the final final column 

we have defaulter or not defaulter. So, if defaulter status is 1 it means that that particular 

customer has defaulted, if it is 0 have not defaulted. 

 

 So, we see how many KYC features are there 1, 2, 3, 4, 5, 6, 7, 7 features for every 

customer. But how many customers are there? See only 210 rows. So, we have 7 features 

characterizing a customer and finally the output whether he is a default or not, but then 

we have only 210 customers that is not much. So the number of features are way more 

compared to the number of customers we have. So if we try to employ a classification 

algorithm on this, let's see how that works. 

 

 So what do, what do we typically do? So this is a Python notebook as you can see. So 

we'll, uh, divide the data frame up into two parts, test and train, sorry, train and test. This 

is DF train and this is DF test. So I have taken 163 observations in my training set, 47 in 



my test set. Then what do I do? I employ, I am not getting into the nitty-gritties of the 

code. 

 

 I simply apply a logistic regression model on this data, on the training data. And finally, 

I take my training the model which I have trained on to the on to the test data and I 

calculate accuracy of prediction and it turns out that it is only 68 percent that is not 

impressive that is not very bad, but that is not impressive either ok. And one reason for 

that it seems like is that the number of customers is too less ok. So, the bottleneck it 

seems in this analysis which the financial institution will probably encounter is there are 

too few customers and too many KYC and transaction features, too many features 

characterizing a customer, okay. So, very few observations, many explanatory variables 

and this leads to what is called the overfitting problem, okay. 

 

 And in case of unsupervised learning it leads to other problems, but let us not get there. 

So, in case of supervised learning this is the problem it leads to, it leads to low bias and 

high variance. So, what do we mean by that? It means that if we have many explanatory 

variables in the data and there are very few observations in the data, it leads to capturing 

the noise or idiosyncrasies of the data. ok. So, of the training data because we are training 

the model on the training data. 

 

 So, it captures the noise in the training data and so when we take this model to the test 

data it leads to very poor predictive performance. So, this is called the curse of 

dimensionality and dimensionality reduction usually is bail this out, bail this out of the 

scenario. Now, let us see. So, what is the objective? The objective is to reduce the 

dimensionality such that it improves performance. And usually there are two ways of 



reducing dimensionality. 

 

 One is feature extraction and the other one is feature selection, ok. Let us understand 

what they are. What is feature extraction? A feature extraction is, first let's try to 

understand what is feature selection. A feature selection is simply, as you can see here, let 

me use the pen. I have a bunch of features, 𝑥1, 𝑥2, … , 𝑥𝑛 . 

 

 I'm selecting a few features amongst these. Amongst these features, I'm selecting a few. 

Let's say I select this and this and this and this. and I get my new set of features so I'm 

just choosing a subset of the original features like in the example which I was talking 

about the new financial or the young financial institution example we had seven features 

characterizing a customer so instead of seven we may simply choose four features from 

those seven that is feature selection what about feature extraction and this is what we are 

bothered about in this lecture. What are we doing? We are not selecting a few features 

from the existing set of features. 

 

 We are taking the existing set of features and we are creating a few new features, 

extracting new features from the existing set of features. And of course, the number of 

new features we are extracting is far lesser compared to  the ah number of original 

features which were there ok. So, that is feature extraction in feature selection I am 

selecting a few features from the original set in feature extraction I am extracting out a 

few new features and the number of ah such new features which are constructed are far 

lesser in number compared to the original number of features fine. And feature principal 

component analysis is one such feature extraction technique. So, what are we doing? So, 

feature extraction in this particular lecture we will only talk about linear combinations. 



 

 Of course, there are many ways of extracting features. What are we doing? We are 

constructing new features from the existing features. So the new features could be any 

sort of function of the existing features ok. But here we are just we will live in a simple 

world here. We will simply talk about linear combinations or linear maps that is if 

𝑥1, 𝑥2, … , 𝑥𝑘  are my original features then a new feature I am extracting 𝑦𝑗  is simply a 

linear combination of the 𝑥𝑖 's which we had ok. 

 

 So, let us say x is a n dimensional vector of features. So, in case of a customer, a 

customer was characterized by 7 features. So, that is a 7 dimensional vector. Now, if we 

simply pre multiply it with a matrix capital T, where capital T has dimensions 𝑘 × 𝑛 and k 

is much lesser than n, then 𝑡 × 𝑡 into x will have will be a 𝑘 × 1 vector. So, y is a 𝑘 × 1 

vector and y happens to be my set of new features. 

 

 I will explain it in a second. So, this is my, so this is basically a projection from the n 

dimensional space to the k dimensional space. I had a 7 dimensional vector representing a 

customer, now I have a 3 dimensional or a 2 dimensional vector representing a customer. 

let's see let's take an example in a bank let's consider any customer C what were my 

original set of features well spending advance payment dot dot dot dot maximum single 

spend ok so any customer C is characterized by the seven features so I call it 𝑥(𝑐) now 

consider any matrix capital T ok. These numbers mean nothing they are just concoction 

of my imagination ok . 

 

 So, they mean they mean nothing and I just populated it with some numbers ok. So, this 

is a 2 cross 7 matrix T. If I multiply T with 𝑥(𝑐) what will I get? Well I will get 2 new 

features ok. The purple feature and the red feature  which are nothing but each of those 

features are nothing but a linear combination of the original features. So, now xc was the 



vector characterizing customer c, now we have 𝑦(𝑐)  characterizing customer c. 

 

 And 𝑦(𝑐) is only two dimensional, so there are two features. So instead of seven features, 

now customer C is characterized by two features. Now the question is, fine, we have 

understood what we are trying to do. What we are essentially trying to do is,  we are 

trying to create new features by simply linearly combining the original features. Like in 

this example, we had 7 original features, we have linearly combined them and created 2 

new features. 

 

 But then question is we cannot simply create features randomly. Yes, we are taking 

linear combinations, but what linear combinations should we take? there could be 

infinitely many possibilities of linear combinations, right. So, what linear combination 

should we take in order to satisfy or optimize, but what do we mean by that? What 

optimum in what sense? Optimum in the sense of information loss, in the sense of 

minimizing information loss. I have my bunch of features I will take linear combination 

and construct new features such that the information loss in this process is minimum ok. 

And that is exactly what we do in principal component analysis. 

 

 it is the technique of constructing new features by linearly combining the original 

features such that minimum information is lost or minimum or maximum variability of 

the data is captured, ok. Great, let us move on. Let us think 2D and let us try to 

understand what we mean by that. let's say we have this scatter plot given by the yellow 

scatter plot which you can see on the screen and we have two original variables 𝑥1 and 𝑥2 

okay now instead of 𝑥1 and 𝑥2 if we rotate the axis and we construct two new variables 

PC1 and PC2 well it seems like PC1 explains most of the variability present in the data 

So, a trivial example would be something like this. So, let us say you have let me just 

construct a trivial example just to drive the point home. 



 

 So, let us say you have this is my 𝑥1 and this is my 𝑥2 and let us say we have points like 

this 1 1, 1 2,  So, these are the points. So, this is 1 1 this is 1 1 2 2 dot dot dot dot dot 10 

10. Now, instead of construct instead of these 2 features if we simply have this particular 

feature what is the equation of this line 𝑥2 − 𝑥1 equal to 0. So, if we simply have 𝑥2 − 𝑥1 

okay that gives us in fact that is enough if we know 𝑥2 − 𝑥1 instead of knowing both 𝑥1 

and 𝑥2 that is good enough right that captures all the variability present in the data great  

So that's a trivial example where all the variability present in the data is captured by just 

one variable 𝑥2 − 𝑥1 instead of two variables 𝑥1 and 𝑥2. By the way, understand that 𝑥2 −

𝑥1  is also a linear combination, right? So this is plus 1 into 𝑥2 ± 1  into 𝑥1 , okay. 

 

 Now the question is this rotation of axis which we see. like like we saw here P c 1 and P 

c 2 are two new variables right. So, what is this rotation of axis synonymous with linear 

combination? Let us see let us see let us say we have let us go back to high school ok 

high school coordinate geometry. Let us say we have our original variables original 

coordinate axis given by 𝑥1, 𝑥2  coordinate of the point according to the original 

coordinate axis is given by 𝑥1, 𝑥2. Now we rotate the coordinate axis by an angle theta 

and let us according to the new coordinate axis the coordinates are given by 𝑧1, 𝑧2 

coordinates of the same point. 

 

 Now we have learnt it and it is very easy to verify that 𝑥1 will be 𝑧1𝑐𝑜𝑠(𝜃) − 𝑧2𝑠𝑖𝑛(𝜃). 𝑥2 

on the other hand is going to be 𝑧1𝑠𝑖𝑛(𝜃) + 𝑧2𝑐𝑜𝑠(𝜃). If we write these two equations in a 

matrix form we simply get this 𝑥1, 𝑥2 is this particular matrix into 𝑧1 now look at this 

black matrix which we have this one if you multiply it with this brown matrix we get the 

identity matrix which means the brown matrix is the inverse of the black matrix right so 

we can multiply both sides of this equation by the brown matrix and we'll get this 



because the black matrix into the brown matrix will become the identity matrix. So, we 

simply get this or in other words what is 𝑧1 and 𝑧2 then? 𝑧1 is simply as you can see here 

𝑥1𝑐𝑜𝑠(𝜃) + 𝑥2𝑠𝑖𝑛(𝜃) . So, 𝑧1  is if x is my original point which is given by 𝑥1, 𝑥2 . 

 

 So, x is 𝑥1, 𝑥2 then my 𝑧1 is simply 𝑎1
𝑡𝑟𝑥 which is a linear combination of the constituent 

variables of x 𝑧2  is 𝑎2
𝑡𝑟𝑥. also something interesting what is 𝐴1

𝑡𝑟𝐴1  and 𝐴2
𝑡𝑟𝐴2  both will 

lead to sin square theta plus cos square theta right and that is equal to 1, okay. So, we 

have that the rotation of axis yields new features which are nothing but linear 

combination of the original features  such that the combining weights form in unit vector, 

great. So, we have kind of understood the intuition of rotating axis which we saw in this 

picture. So, rotation of axis is synonymous or tantamount to synonymous with or 

tantamount to linearly combining the original features. 

 

 So, the next obvious question is what rotation is optimal? You can rotate it by any angle, 

but what rotation is optimal or what linear combination is optimal? How do we choose 

this principle components? That is what we are talking about here. So, here is the 

algorithm. So, how do we do it? We do it in the following manner. The first principle 

component is chosen such that it points in the direction of largest variance in the data. 

The second principle component on the other hand is chosen such that it is orthogonal to 

the first principle component and has the largest variance. 

 

 So, the second principle component is or points in the direction of largest variance 

conditional on the fact that it is orthogonal to the first principle component. What about 

the third principle component? The third principle component has maximum variance 

constrained on the fact that it is orthogonal to both the first and the second principle 

component so on and so forth. So, that is that. So, every principal component points to 

the direction of largest variance of the residual subspace which the previous such that it is 

orthogonal to all the previous principal components. 

 



 Great, let us move on. So, if this is your data set this is your scatter diagram what would 

you do? You will choose the direction of maximum variance  that seems to be the 

direction of maximum variance then I am going to choose the direction of maximum 

variance such that it is orthogonal to this direction which is this direction. So, that is the 

second principle component in this case we have two dimensions and hence we just have 

two principle components ok, but I hope I have been able to convey the intuition  Great 

now let us get into the math and formalize what we have learned, let us formalize this 

intuition mathematically. So, what are we doing? We have our initial set of features 

capital X, we are finding 𝐴1
𝑡𝑟𝑋 that is nothing but a linear combination of the constituent 

variables of X, 𝑍1 is 𝐴1
𝑡𝑟𝑋 such that variance of 𝑍1 is maximum. So, I am choosing my 𝐴1 

the combining weights such that variance of 𝑍1 is maximum given that the combining 

weights form a unit vector. Then I will find then I choose PC 2 which is the second 

principle component such that variance of 𝑍2 is maximum and 𝑍2 is perpendicular to 𝑍1. 

 

 So, basically I am choosing 𝐴2 such that variance of 𝑍2 is maximized and we have two 

constraints here. In case of the first principle component there was just one constraint that 

the linearly combining weights form a unit vector. Here we have two constraints the 

linearly combining weights form a unit vector and 𝑍2  is perpendicular to 𝑍1  or their 

covariance is 0. Third principle component  I am finding 𝑧3 equal to 𝐴3
𝑡𝑟𝑋 such that the 

variance of 𝑧3 is maximized, the linearly combining weights form a unit vector and the 

third principle component is orthogonal to both the first and the second principle 

component so on and so forth. 

 

 So, let us understand, let us do the math now. consider the j-th principle component. So, 

what is the jth principle component? It is simply 𝐴𝑗
𝑡𝑟𝑋. So, if x is 𝑥1𝑥2𝐴𝑗 could be 𝑎𝑗1𝑎𝑗2 

and 𝑧𝑗 then becomes  ok great. So, we have so this is what 𝑧𝑗 is so that is the j principle 

component. So, this is 𝑧𝑗𝑎𝑗
𝑡𝑟𝑥 now what is variance of 𝑧𝑗 now x is a x is a vector ok and x 



is a feature is a feature vector. 

 

 So that is a random variable because I am selecting any particular customer. So what is 

variance of 𝑧𝑗 then? It is simply expectation of 𝐴𝑗
𝑡𝑟𝑥. Remember from the previous lecture 

what is variance of any random variable z? It is simply expectation of (𝐸 − 𝐸[𝑍])(𝐸 −

𝐸[𝑍])𝑡𝑟 into z minus expectation of 𝑍𝑡𝑟. Okay? So that's what we are doing here. So this 

is 𝐴𝑗
𝑡𝑟 − 𝐸[𝐴𝑗

𝑡𝑟] . 

 

 This is aj transpose x minus expectation of 𝐴𝑗
𝑡𝑟𝑥 − 𝐸[𝐴𝑗

𝑡𝑟𝑥]. Okay? Great. Now if we 

simplify this, what will we get? We will get this. If we take 𝐴𝑗
𝑡𝑟 out, we will simply be left 

with 𝐴𝑗
𝑡𝑟 comes out, here 𝐴𝑗 comes out, we are simply left with this in between. Now what 

is this? Just by this definition, it is variance of x, okay. 

 

 And let us say variance of x is given by 𝛴. So variance of 𝑧𝑗  is simply 𝐴𝑗
𝑡𝑟𝛴𝐴𝑗  where 

sigma is the variance matrix of x, x being my feature vectors. So, my optimization 

problem is simply maximizing 𝐴𝑗
𝑡𝑟𝛴𝐴𝑗 that is the variance of the j th principle component 

such that the linear combining weights form a unit vector. But we do not know sigma 

right. but we have the data on x we know all the feature vectors. So, we can compute the 

sample covariance and sample variance of all the features and sample covariance between 

any pair of features. 

 

 So, we can compute sigma hat which is the sample variance matrix of x. So, my 

optimization problem then becomes this maximizing the variance of the j-th principle 

component which is this. such that the linear combining weights form a unit vector, okay. 

Seems fine? No, I think we missed something. 



 

  

What did we miss? Pause the video and try to guess. When we define this optimization 

problem for finding the j-th principle component, what have we missed? We have missed 

something important. We missed the orthogonality constraints. how did we come up with 

the principal components the first principal component is chosen such that sorry the 

second principal component is chosen such that is it maximizes variance and is 

orthogonal to the first the j-th principal component should be orthogonal to all other 

principal components right which means so let us say the i-th principal component and 

the jth principal component So, they should be orthogonal or in other words their 

covariance should be 0. So, if we simply find covariance of 𝑧𝑖𝑧𝑗 what will that become? If 

we proceed just like we did it will simply be 𝐴𝑖
𝑡𝑟𝛴𝐴𝑗 and since we do not know 𝛴 we will 

use its sample analog which is sigma hat. 

 

 So it will be 𝐴𝑗
𝑡𝑟𝛴𝐴𝑗. All this thing will become clear at the end of the lecture because I 

will show all the computational steps with an example. And things will become crystal 

clear. So if something is bothering you, please, please hang on. Right? So coming back to 

the point. 

 

 So this should be 0 for all 𝑖 ≠ 𝑗. So, these are my set of constraints which should be 

there. So, when I am finding this j th principle component we should have these 

constraints in mind that it is orthogonal to all other principle components. but that will 

make life really difficult finding every principal component such that it is orthogonal to 

every other principal component. So, it will it will make me work through k or whatever 

many such constrained optimization problem that is mathematically intractable that is too 

much ok. So, what should we do? We are in a problem  And at times if we land up in a 

problem in life it is better to just ignore it live in denial and hope that it will go away. 



 
 So, that is what we will do we will have faith and we will hope that this problem will go 

away the problem of missing orthogonality constraints will go away. So, we will go with 

our faulty optimization problem which is maximizing this. such that. So, our faulty 

optimization problem for the j th principle component was what maximizing 𝐴𝑗
𝑡𝑟𝑥 such 

that sorry 𝐴𝑗
𝑡𝑟𝛴𝐴𝑗  such that 𝐴𝑗

𝑡𝑟𝐴𝑗  is 1 ok. 

 

 So, we will we will we will go with this. and this is simple see as we had talked about in 

the previous lecture this is an example of a constrained optimization. This is my objective 

function this is my objective function and this is my constraint 1 − 𝐴𝑗
𝑡𝑟𝐴𝑗. So, this is my 

constraint. So, we will define the Lagrangian in this manner l plus this where 𝛽𝑗 is my  

Lagrange multiplier. Now let us differentiate let us differentiate with respect to 𝐴𝑗 that is 

what we are maximizing it over right. 

 

 Now look at this do you remember this mathematical form from the previous lecture 

sigma hat is a symmetric matrix 𝐴𝑗 is a vector  If you go to the previous lecture, we have 

done exactly this, a very similar example. So, 𝐴𝑗
𝑡𝑟𝛴𝐴𝑗 , when it is differentiated with 

respect to the vector 𝐴𝑗, that should give you 𝐴𝑗
𝑡𝑟𝛴𝐴𝑗, this can be written as 𝐴𝑗

𝑡𝑟𝐴𝑗, where i 

is your identity matrix. So, this will become 2 𝐼𝐴𝑗 , which is 2𝐴𝑗 . 

 

 and then there is a 𝛽𝑗 so that becomes 2𝛽𝑗𝐴𝑗 okay great. Now if we simply rearrange this 

equation we get the blue equation which is 𝛴 − 𝛽𝑗 into i into 𝐴𝑗 that is 0 in this case 0 is a 

null vector. Now recall the previous lecture the mathematical prerequisites lecture. this 

equation should remind you of something this simply tells you that 𝛽𝑗 are the eigenvalues 

and 𝐴𝑗 are the is the corresponding unit eigenvector of 𝛴 ok great and if that is the case 

then we are really happy why because we have found the 𝐴𝑗 which is the unit eigenvector 

remember we will have a family of eigenvectors and in that family there is only one unit  



 

eigenvector right. So, we have found the unit eigenvector 𝐴𝑗 and that is that constitutes 

the linear combining weights of the j th principle component. Wow that is that is pretty 

good we have found the linear combining weights of the j th principle component which 

means we have effectively found the j th principle component that is fantastic. 

 

 right which is what this is what we set out to do, but we still have that little niggle little 

confusion little dissatisfaction what we had ignored the missing orthogonality constraints. 

So, this solution might be erroneous ok, but let us see our savior is linear algebra. There 

is one particular result about symmetric matrices which will turn out to be our savior. 

 

 Let us see. This is the theorem. It says that eigenvectors corresponding to different 

eigenvalues of a symmetric matrix are orthogonal. Let us quickly breeze through this 

proof, very simple, hence I included it in the slides. Let us say A is a symmetric matrix. 

and let us say 𝐴𝑥1 is 𝛽1𝑥1𝐴𝑥2 is 𝛽2𝑥2𝛽1 and 𝛽2 are my two eigenvalues and 𝑥1 and 𝑥2 are 

the corresponding unit eigenvectors let us say. Then if I multiply the first equation by 𝑥2 

transpose and the second equation by 𝑥1 transpose  we get equation 1 and equation 2, 

okay. 

 

 So this equation I have multiplied both sides by 𝑥2  transpose, this equation I have 

multiplied both sides by 𝑥1 transpose and we end up with equation 1 and 2. Now look at 

this 𝑥2
𝑡𝑟𝐴𝑥1. What is the dimension of this? Well 𝑥2

𝑡𝑟𝐴 is let's say 𝑛 × 𝑛, then 𝑥2 transpose 

will be 1 × 𝑛, 𝑥1 is 𝑛 × 1, so this is 1 × 1. So 𝑥2
𝑡𝑟𝐴𝑥1 is a scalar. What about transpose of 

this? Remember if I take transpose of a scalar,  I get the scalar itself. 

 

 So, this means 𝑥2
𝑡𝑟𝐴𝑥1 should be equal to 𝑥2

𝑡𝑟𝐴𝑥1 transpose. Now, if you take transpose of 

this you will get 𝑥1
𝑡𝑟𝐴𝑡𝑟𝑥2, but A is symmetric. So, A transpose is A. So, this is 𝑥1

𝑡𝑟𝐴𝑡𝑟𝑥2 



that is what we see. 

 
 So, 𝑥1

𝑡𝑟𝐴𝑡𝑟𝑥2 is equal to 𝑥2
𝑡𝑟𝐴𝑥1. So, the left hand side of the two equations are equal 

which means that the right hand sides are also equal. If the left hand sides are equal it 

means that the right hand sides are equal which means 𝛽1𝑥2
𝑡𝑟𝑥1 and 𝛽1𝑥2

𝑡𝑟𝑥1 these two are 

equal. but again 𝑥1
𝑡𝑟𝑥2  and 𝑥2

𝑡𝑟𝑥1  very similarly they are also equal. So, it simply 

simplifies to this. Now, we assume we started with the assumption that what is the 

theorem saying eigenvectors corresponding to different eigenvalues different 

eigenvalues. 

 

 So, 𝛽1 and 𝛽2 are different if 𝛽1 and 𝛽2 are different look at this equation 𝛽1 and 𝛽2 are 

different, when can this equation lead to 0? Only if 𝑥1
𝑡𝑟𝑥2 is 0, which in turn implies that 

𝑥1  and 𝑥2  are orthogonal, ok. Very good, let us move on. Now, great we learnt this 

theorem. Now, let us see how it is going to help us resolve the problem which we had. 

What was the problem remember? We solved the optimization problem for the j th 

principle component ignoring the constraints, orthogonality constraints that is ignoring 

the fact that it has to be orthogonal to all other principle components. 

 

 Let us see. Now, what is the first important point? 𝛴 is a variance matrix and hence it is 

symmetric. Remember we did it in the last class last lecture what was 𝛴𝑖𝑗 it is covariance 

between 𝑥𝑖  and 𝑥𝑗  so what is 𝛴𝑗𝑖  covariance between 𝑥𝑗  and 𝑥𝑖  again so these two are 

equal so 𝛴𝑖𝑗 and 𝛴𝑗𝑖 are equal right. which means so since 𝛴 which is the variance matrix 

since it is symmetric the eigenvectors corresponding to the different eigenvalues of sigma 

hat are orthogonal, okay. Thus in the optimization problem what was 𝐴𝑖 and 𝐴𝑗 what did 

it turn out they were orthogonal and they were the eigenvectors of sigma hat, so they 

should be orthogonal, okay. Now what is covariance between the ith and the jth principle 

component? If we proceed in the previous manner it is simply 𝐴𝑖
𝑡𝑟𝛴𝐴𝑗 exactly like we did 

before. 



 

 Now what is 𝛴𝐴𝑗? 𝐴𝑗 is the, 𝐴𝑗 is a eigenvector of sigma hat for which the corresponding 

eigenvalue is 𝛽𝑗 that is what we have seen during the Lagrange optimization. so 𝛴𝐴𝑗 is 

simply 𝛽𝑗𝐴𝑗𝛴𝐴𝑗  is simply 𝛽𝑗𝐴𝑗  because 𝐴𝑗  is an eigenvector and 𝛽𝑗  is the corresponding 

eigenvalue 𝛽𝑗 is a scalar it comes out and i have simply 𝛽𝑗𝐴𝑖
𝑡𝑟𝐴𝑗 but we have just seen in 

the theorem which we proved that the eigenvectors corresponding to different 

eigenvalues are orthogonal. Hence 𝐴𝑖
𝑡𝑟𝐴𝑗 is 0. So, this entire thing becomes 0 which in 

turn means covariance of 𝑧𝑖𝑧𝑗  becomes 0. 

 
 Wow that is wonderful that is what we wanted right that is what we wanted. We wanted 

the i th and the j th principle components to be orthogonal to each other. and it and we 

those were constraints which had to be imposed, but it turns out that they automatically 

become orthogonal, the constraints are automatically satisfied. So, we need not bother 

about them when we are solving the optimization problem, okay. Now, one more what is 

variance of 𝑍𝑗  the jth principle component remember it is 𝐴𝑗𝛴𝐴𝑗 . 

 

 that is what we were maximizing if you remember. Now sigma hat a j again by the same 

thing 𝛽𝑗𝐴𝑗 , 𝛽𝑗  comes out 𝐴𝑗
𝑡𝑟𝐴𝑗  remember 𝐴𝑗

𝑡𝑟𝐴𝑗  is 1 because 𝐴𝑗  is a unit vector we are 

only talking about unit Eigen vectors. So, it is simply 𝛽𝑗 which means that the Lagrange 

multipliers which we found out in the Lagrange optimization  the Lagrange multipliers 

are the variances of the principal components. And we have found out the Lagrange 

multipliers right they are the Eigen values of sigma hat great. So, which means we have 

found out not only the principal components  which is which is simply knowing the 𝐴𝑗 's 

once we know all the 𝐴𝑗 's we have effectively found all the principal components. We 

have also found out the variance of every principal component which is given by 𝛽𝑗 

which is nothing but the Eigen values of the 𝛴  matrix. 

 



 Which means if we know the sigma hat matrix the Eigen vectors will give me  the 

combining weights for the different principle components and the corresponding 

eigenvalues will give me the variance of that particular principle component right 

excellent so now we look at an example and we will try to see how to go about this so 

what is the first step when you have a data set let us summarize what is the first step 

which you have The first step is you are given the original features from that compute the 

estimated variance covariance matrix sigma hat find sigma hat. Then find the eigenvalues 

and eigenvectors of sigma hat in the previous lecture I have explained clearly how to find 

eigenvalues and eigenvectors of a matrix. So, find the eigenvalues and eigenvectors of 

sigma hat which are 𝛽𝑗 and 𝐴𝑗 's. then find all the unit eigenvectors and once you have 

done that you have found the principal components and the variances of those principal 

components. The principal components are simply 𝐴𝑗
𝑡𝑟¯ 𝑋  where 𝐴𝑗̄  is the jth unit 

eigenvector. 

 
 Great, let us move on. Let us take an example and let us see instead of doing let us first 

take an example and see and then we will come back. Let us say we have two variables x 

and y, x is given by 1, 3, 3, 5, 5 whatever and then we have another variable y 2, 3, 5. If 

we plot a scatter plot this is how it looks like. Now, can we find principal components? 

We have two variables in the data set. 

 

 can we find principal components let us see. So, what is my first step if you remember I 

should first compute the covariance matrix let us do that I know the x vector. So, I can 

find variance of x the sample variance of x which is given by this the sample variance of 

y given by this actually ideally you should have 𝑛 − 1 here. ok instead of n you should 

have 𝑛 − 1. So, you have found the variance the sample variance sample covariance ok 

and thus you have your variance matrix sigma hat. Once you know 𝛴 then life is easy all 

you need to do is find the Eigen values and Eigen vectors of 𝛴 . 

 



 So we have seen how to find that 𝛴𝐴 is 𝛽𝐴, this is what we have done in the previous 

lecture sigma hat minus beta into the identity matrix into A is 0. Now we will have a non-

null solution only if the determinant of 𝛴 − 𝛽𝑖 is 0 or determinant of this matrix is 0 and it 

turns out we have 2 values 𝛽1 is 9.34 𝛽2 is 0.41. Now what are these betas we have just 

proved in the in the previous slides 𝛽𝑗 is the variance of the j th principal component ok. 

 

 Now what is explained variance of PC 1 it is simply what portion of the total variability 

of the data is captured by principal component 1. what portion of the total variability of 

the data is captured by principal component 2, okay. And we see that principal 

component 1 captures an overwhelming 96 percent of the variability of the data. So, 

which means that instead of taking x and y, if we just take principal component 1, PC 1, 1 

variable. that is that is almost equivalent to taking two variables x and y, just taking PC 1 

captures 96 percent of the information or variability present in the data set constituting x 

and y. 

 
 So, let us go ahead and find PC 1, remember we have found the eigenvalue. So, we can 

find the eigenvectors of sigma hat, hence we can find the unit eigenvectors of sigma hat. 

once we have found that I can find P c 1, these are my combining weights and this is P c 

1, okay. And this is how it looks like, this is the this is the P c 1 vector. So, which means 

instead of taking x and y 2 variables if we just take P c 1 that is good enough, it captures 

96 percent of the information. Now, so we have reduced the dimension from  2 to 1 great 

now let us go back to that data set which we had in mind which we started off with 

remember this. 

 

 So, let us try to see what we are doing here I will I will try to get into the real thing  yeah 

so what i'm doing is so this is my original data set this is my original data set what i'm 

doing is the following i'm trying to find all the principal components and then try to i'll 

try to see taking how many principal components is good enough the choice so 



understand how to do this so from from sklearn i'm importing this library called pca And 

this is what I am doing, I have defined an defined a empty array called explain variance, 

let me explain variance, then I am running a loop from 1 to 7, remember there were 7 

features characterizing a customer. And then what am I doing, I am finding the first 

principal component, see component equal to k you are given, remember. So, in the when 

k equal to 1, I am finding the loop enters with k equal to 1, I am finding the first principal 

component and storing it in YPCA and then I am also finding the explained variance 

ratio. Remember that is what we calculated in the example a few minutes back. 

 
 The explained variance of PC 1 was 96 percent in our example which we did in the 

slides. So, here for every principal component, I am finding the principal component and 

I am finding the explained variance ratio of the principal components, ok. Now, I am 

doing the following. I am plotting the cumulative explained variance and the principal 

component the number of principal components. So, you can see here the explained 

variances the first the explained variance of the first principal component is 0.78 that is 

78 percent that of the second principal component is 12 percent that of the third principal 

component is 6 percent. 



 
 So, if we cumulatively plot it. So, what is the  total way ah variability captured by the 

first 3 principal components that is 78 plus 12 plus 6 that is a little more than 96 percent 

maybe 97 percent that is what we see from the diagram 2. If we just take the first 3 

principal components the cumulative variance the cumulative variability captured by 

them is 97 percent ok fantastic. So, which means just taking the first 3 principal 

components is good enough. 

 

 and that is what we do remember we were storing them in YPCA. So, I am sorry. So, 

this is what we do. So, I am storing these in PC 1, PC 2 and PC 3 ok and I am inserting 

these principle components in my data set. So now my new dataset looks like this. 

Initially it looked like what? It was characterized by seven features. 

 

 Like this. Spending, advance payment, dot dot dot dot dot. And finally there was, maybe 

you can see it here. So there were seven features here. But now,  Now, instead of these 7 

features, I have replaced it with just 3 features, first PC, second PC, third PC. The output 

variable of course remains the same, defaulter, yet either a defaulter or not a defaulter. 

So, instead of the explanatory variables I had 7, I have reduced it to 3. I have just found 

the first 3 principal components and it turns out they capture a 97 percent of the 

variability. 

 

 So, we can move ahead with this instead of the original data set. If we want to predict 

and we carry out the same thing again, we separate the training set and the test set, we 

take randomly take 161 observations in the training set, 49 in the test set, we run a model 

and we see that we get a 83 percent accuracy here. It turns out that if we do it with PCA 

here, it just gives a little bit of a better performance. Anyway, so I think I have managed 

to drive home the point of dimensionality reduction using principal component analysis. 

 



 This is where we end this particular segment. I hope it's clear, I hope it has been an 

exciting journey for you. I hope it was nice learning this new technique. Thank you. See 

you in the next lecture. 


