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 Welcome to this lecture of artificial intelligence for economics. In this lecture, we will 
begin with a very important technique for dimensionality reduction, which is principal 
component  analysis.  Now,  nowadays  when  you  encounter  huge  data  sets,  where  the 
number of explanatory variables are huge, then you need to shrink the data and reduce the 
number of variables. And this is one of those techniques. This is one such technique 
which leads to, ah, reducing the dimensionality of the data. But before, ah, and this is 
what  we  will  study  for  the,  for  the,  for  the  two  lectures,  this  and  the  next  one.

 So before we get into the technique, ah, right away, let's understand the mathematical 
prerequisites. You just need to be, ah, you need to know a little bit of statistics, some 
elementary  linear  algebra,   and  Lagrange  optimization.  So,  we  will  first  cover  the 
mathematical prerequisites in a short lecture and then we will get into the real technique 
great.  So,  let  us  get  started.

 The first thing which we need to know is random vectors or vectors of random variables. 
So, let us say x is a random variable x is a random variable  we know that and let us say x  
has a density function given by capital F X (⋅) and let us say x has a domain or a support 

given by DX (⋅). Then we know that a random variable is usually characterized by or the 

two features of the random variable which we are typically interested in are expectation 
of  x  which is  simply given by integrating over  the  domain of  x  and then we know 
variance of x is given by or let me write it here, right. let us understand this is this is for a 
random variable one random variable. But what if we have a vector of random variables 
like this let us say x is a vector of random variables then how can we find the expectation  
and  variance  of  a  vector  of  random  variables  ok.

 So, let us understand. expectation of any random variable X j is given by μ j let us say. 

So, what is expectation of a vector of random variables? Well it is simply vector of the  



expectations as simple as that. So, this is simply  and what would that be  μ1 , μ2 ,…, μn 

which is nothing but a point in the n dimensional plane right. So, that is expectation of x  
where  x  is  a  random  vector  is  a  vector  of  random  variables.

 What about variance of x variance of this vector of random variables what will that be 
given by  Well, variance of x is given by this. Take a look at this carefully. So this is  
X−E [X ].  Remember,  x  is  a  vector,  expectation  of  x  is  also  a  vector.  Transpose.

 Okay? So that's what variance of x is given by. Or if we just write it a little more  simply 

this is (x−μ)⋅(x−μ)tr that is variance of x. Now, you can guess that what will this lead to  

what is this (x−μ)⋅(x−μ)tr let us see. Let us look at this matrix. x is n×1 right μ is n×1.

 So, x - μ will be n×1 vector what about (x−μ)tr that will be a 1×n vector. So, if this is a 

n×1 vector and this is a 1×n vector if we multiply them we will get a n×n matrix. So 

how will (x−μ)⋅(x−μ)tr look like? Let us see. Let us write this down. So x−μ is simply 

this.

 And then you have, okay? Now if we multiply these two, what will we get? You will get  
something like this. That's the first row, the second row will be and so on and so forth  

and the last element is going to be. So this is how (x−μ)⋅(x−μ)tr looks like. What if we 

take expectation? remember that is what it  was variance of x was expectation of this 

matrix (x−μ)⋅(x−μ)tr remember just like in a vector if you take expectation of a vector 

of random variables you get a vector of the expectations of the of the constituent random 
variables  here  also  if  you  take  expectation  of  of  this  matrix  it  is  same  as  putting 
expectation on all the constituent terms. So it is simply this, this, this, this, this, this, 



okay.

 So let us call this matrix Σ. Now can you guess what will, what is Σij where i≠ j let us 

say. Let us say this is Σ1,  this. Let me change the color of the pen just to make it little 

more identifiable. So, this is Σ12 and what is this? Well, this is covariance between X1 and 

X 2,  okay.

 So, if you have two random variables X1 and X 2 and their means are μ1 and μ2, then that 

is  the definition of  covariance between  X1 and  X 2.  So  Σij will  simply be covariance 

between  X i and  X j. What about the diagonal terms? The first diagonal term is simply 

variance of  X1.  The second diagonal term is the variance of  X 2.  So on and so forth.

 So Σij is simply variance of X i ok great. So, we have learnt about random vectors how to 

how to compute expectation and variance of a random vector ok. If we take expectation 
of a random vector we simply get the vector of the expectations  And if we take if you 
want to find variance of a random vector we end up getting a matrix sigma where Σij is 

covariance of X i X j for all i≠ j and the diagonal elements are simply the variances of the 

constituent random variables very good let us move on. Let us move on to the next topic  
which  is  a  vector  differentiation.  Let  us  understand  this.

 Let us say we have a multi variable real functions, multivariate real functions. So, let us  

say it is Rn→R ok. So, let us say something like f of  it is a function of n variables. Now, 
we know that if it is a function of n variables this denotes the partial derivative of f with 
respect to x that is fine or with respect to  X j. So, that is the partial derivative of the 

function with respect to any particular variable X j, but  Now if I tell you that okay I will 



call  this  the  vector  x  okay  this  is  my  entire  vector  a  row  vector  x.

 So now if I tell you what if I have to differentiate this function with respect to a vector x  
where x is a vector right x is this vector. So what if I want to differentiate with respect to 
the vector x, then what will you get? Then what you get is another vector which is simply 
given by this, okay. Well this is often written as the gradient of f with respect to x. so this  
is the this is this is what the gradient vector is if you have a multivariate function gradient 
of the function with respect to the input vector is simply given by this very good now let 
us look at two easy examples and let us remember them because we are going to use 
them while we study principal components So, let us see first one let us say I have a  
vector a n dimensional again and I have a vector x again n dimensional ok. So, a is 
(a1a2 ...an) x  is  (x1 x2 ... xn).

 So, what is a transpose x? so again is what (a1a2 ...an) and x1 is this x is this (x1 x2 ... xn) 
so what is a transpose x well that is simply 1 ,…,n. Now, if I tell, so this is again, if I 
consider the a's as the, as constants. So this is again a function of x1 , x2 ,…, xn. So this is a 

multivariable function. Now if I ask, what if I differentiate this function with respect to 
the vector x? So, what if I differentiate a with respect to x, the vector? what will we have? 
Let us see not not hard to imagine, we will have x1 , x2 ,…, xn that is what we will have.

 Now, what is what is what if I differentiate ∑ ai xi with respect to x1, what do we have? 

So, that is simply a1 right. So, we have the first element of this vector is this is a1. What if 

we differentiate ∑ ai xi with respect to x2, what will we have a2. So, which is nothing but 

the vector a. So, which means if I differentiate a transpose x with respect to x I end up  



getting  the  vector  a  very  good.

 So, that is that is that is important that is let remember this. Let us look at another form 
of function  Let us say x is a vector again and let us say A is a matrix, A is a n cross n  
symmetric matrix, okay. If that is the case then what about this function? x transpose A x. 
Well,  this is  a scalar function see like we had in the previous case too.  What is  the 
dimension  of  x?  x  is  n×1,  x  is  this.

 So x is n×1, a is n×n, x is again n×1, sorry x transpose is going to be 1×n right, 1×n 
and x is n×1, so that is what we have. So what will be the dimension of this? So this is 
1×1, so that is a scalar, so it is a scalar function, good. Now, what if we differentiate this,  

what if we differentiate this with respect to x or let us say gradient of x tr A x, what will 
this be ok. that is what we want to find out that is our that is that is another problem 
which we are chasing. So, before we do that let us let us take a simple example instead of 
n dimensions let  us take a little example with 2 dimensions ok and see what we are 
getting  and  the  same  result  will  actually  hold  true  for  n  dimensions  too.

 Let us see, let us make it  simple, so let us say x is  (x1 , x2),  let us say A is, it  is a 

symmetric matrix remember, so a11a12 .. ., this and this will be equal, a21 and a12 is going 

to be equal right in a symmetric matrix and this is a22. great so if this is the case then what 

is  x tr A x so what is this and then you have  (x1 , x2). So, let us try to multiply this and 

break it up, let us try to simplify and break this up and let us see what we get, let us try. 
So, we have (x1 , x2) and then we had a11 If we do this multiplication what will we get? 

We will have a11 x1+a12 x2 then a12 x1+a22 x2. and then this is a row vector this is a column 

vector  multiply  again.



So, you have  a11 x1+a12 x2 + a12 x1+a22 x2. And if you simplify this you simply end up 

with a11 x1
2+a22 x2

2+2a12 x1 x2 that is what you end up with ok. Now, so this is x tr A x Now 

if  you  differentiate  this  with  respect  to  the  vector  x  what  will  you  get?  So,  if  you 

differentiate  x tr A x with respect to the vector x what will you get? You will get with 
respect to  x1 with respect to  x2 and what is that? If you differentiate with respect to  x1 

what will you get? this function if you differentiate with respect to x1 what will you get? 

You will simply get 2a11 x1+2a12 x2. If you differentiate with respect to x2 what will you 

get? 2a22 x2+2a12 x1. Now, this if you take the 2 out  this can simply be written as this  

these  two are  equivalent  you can  you can  multiply  this  this  you can  do this  matrix 
multiplication  and  see  that  you  will  arrive  at  this  matrix.

 And what is this? So, this is 2 A x. ok. So, which means if you have if you if you 

differentiate x tr A x with respect to x you end up getting 2 A x where A is a symmetric 
matrix and x is a vector great. So, we have learnt a little bit about vector differentiation 
we have learnt about  random vectors or vectors of random variables and now we have 
learnt about vector differentiation now our next topic eigenvalues and eigenvectors so I 
am quickly running through the basics of course you can grab any standard mathematics 
textbook  and  read  them more  in  a  more  detailed  fashion  Okay,  now let  us  look  at 
eigenvalues and eigenvectors of a matrix. What do we mean by that? Okay, let us begin.

 Let us say we have let us say let us take a matrix 1 1 3 2 and let us multiply this with the 
vector 1 0, okay. So, 1 0 is a vector, this is a vector and I am simply pre multiplying the 
vector 1 0 with this matrix 1 1 3 2. What will we get? This is 1 into 1 + 1 into 0, so that is 
1, then you have 3×1+2×0 that is 3. So what happened? When we multiplied this vector 
by  this  matrix,  we  got  another  vector.  So  think  of  it  as  an  operation  on  a  vector.



 So pre-multiplying by a matrix is actually an operation on a vector, okay. So let's try to  
understand what actually happened. Let's have a geometrical intuition about it. So in a 2D 
plane,  1 0 is here this is 1 0 if we pre multiply 1 0 by this particular matrix what did we 
end up with 1 3 which is this. So, this was the initial vector this is 1 3 and we end up with  
this  vector  ok.

 So, what happened the vector got rotated not only rotated it also got elongated. what is  
the length of this vector 1 3 it is it is larger than 1 0 right it is actually the hypotenuse it is  

root over of 32 + 1 square root over of 10 that is the length of the vector 1 3. So, if you if 
you pre multiply of a particular vector or any vector with a matrix it leads to rotation and 
change in length ok.  fine.  Now, what  is  meant  by Eigen vectors of  a  matrix? Eigen 
vectors of a matrix are those special family of vectors such that when they are multiplied  
by any other matrix they do not  change directions ok,  they do not  change direction.

 So let us say I have a matrix 1, 2, 5, 4, okay. Let us say I have this matrix and I ask you 
find the eigenvectors and eigenvalues of this matrix. How will you find it? The answer is 
the way to find it is you will have to find those vectors which when multiplied by this, let  
us call this matrix A. so vector like x1 x2 such that it does not change direction. So, this 

vector  when  pre  multiplied  by  a  will  not  change  direction.

 So, what will it be? It will simply change it may change in length. So, it will simply be a  
multiple of this vector x. So, it will simply be some λ which is a scalar this is a scalar into 
is x ok. So, we have if I have a matrix A then a random sorry an eigenvector of A is 
simply a vector x such that when it is multiplied by A it simply yields another multiple of  
that  particular  vector  and this  multiple  λ is  called the eigenvalue of  A of  matrix  A.



great. So, now that we know if we know matrix A which which is what we do can we 
find this eigenvalues and eigenvector of a matrix let us see how to do that. So, let us say 
we have a matrix A and we want Ax=λ x we want to solve for λ and x let us see how to 
do  Now this will mean a into x this is λ into the identity matrix into x I can always I can 
always say that right identity matrix into any vector is that vector. So, that would mean a 
- λ i into x that is going to be 0 or or a null vector to be precise ok. Of course one solution 
to this problem is x equal to a null vector, but that is not what we want, we want non-null 
solutions to this problem, okay. So we are not this x equal to null vector that is trivial,  
that is trivial, so we are not bothered about that, we are trying to see what other non-
trivial solutions are there and when will this equation or set of equations as it will turn out 
if we write the equations up separately When will they have a non-trivial solution? Well 
only  when  the  determinant  of  this  coefficient  matrix  this  is  0  did  it  right  ok.

 Now the question is what was my a? My a was this 1 2 5 4 remember  So what will this  
determinant look like? So this is 1, 2, 5, 4 - λ what is the identity matrix? Determinant of 
this is 0. Let us simplify further. So this is 1 - λ 2  5 4 - λ this determinant is 0. Now, let 
us simplify this further and let us see what we get. So, this is 1 - λ into 4 - λ - 10 that is 0.

 So, which means what? So, we are we are landing up with 4  - 5 λ + λ2 - 10 is 0 or λ 
square - 5 λ - 6 that is 0. So, what do we have here? So, we have λ equal to 6 and - 1 that 
is what we have. So, these are the 2 Eigen values of this matrix 1 2 5 4. Now, let us see 
what are the Eigen vectors. So, 1 2 5 4 has 2 Eigen values what are they 6 and - 1.

 Now, let us see. So, that is what we have got. So, let us consider let us start with λ 6 if 
the eigenvalue is 6 then what will we have right A x is λ x. So, what do we have from 



this 2 sorry x1 + 2 x2 and this is 5 x1 + 4 x2 or we simplify this. So, this is 2 x2 - 5 x1 and 

here  you  have  5 x1−2 x2 that  is  0  0.  and  what  do  we  get  from  here.

 So, we get x2 equal to 5 by 2 x1. So, from this we get x2 equal to 5 by 2 x1 ok. So, let us 

say x1 is some number α  then what is this eigenvector x1 x  it is simply α  5 by 2 α . So, 

that is so, 1 5 by 2 1 comma 5 by 2 for λ equal to 6 1 comma 5 by 2 is the eigenvector. 
So, if this is the eigenvalue this is my corresponding eigenvector ok. And when you have 
an eigenvector  any multiple of that eigenvector is also another eigenvector that should be 
very  apparent  from  this  equation  right.

 If A x is λ x then A into β x will also be λ into β x which means β x will also turn out to 
be an eigenvector right. So, we basically for every eigenvalue we have an eigenvector 
and all those and all multiples of that eigenvector are they are also eigenvectors  So, 
similarly for λ equal to - 1, I can also compute my family of eigenvectors, great. So, we 
have learnt about eigenvalues and eigenvectors. Now we will talk about our fourth topic 
of our map prerequisites. So, first we have learnt about ah random ah vectors or vectors  
of random variables, then we learnt about vector differentiation, then we learnt about 
eigenvalues  and  eigenvectors  and  now  Lagrange  optimization.

 So, what is Lagrange optimization? So, suppose we have a function f  So, Lagrange 
optimization is a way of constrained optimization. So, I will just give you an example. 
Let us say I have a function f x 1 x 2 and I want to maximize this function such that there  
is  a  constraint.  like  this  or  there  are  multiple  constraints.

 So, let us saygi or the ci. So, let us say there are k constraints or something like this or let  



us say two constraints. So, in this case we will just consider one constraint let us let us  
keep  it  simple.  Then  what  do  we  do?  We  define  a  Lagrangian   So  we  define  a  
Lagrangian, what is that? It is this, this is called the objective function, f is the objective 
function and then we simply write this as I am not getting into the mathematical nuances 
of the technique, I am just giving you the  workable and just passing on a workable skill 
here.  So,  we  just  write  the  Lagrangian  in  this  manner  and  then  we  find  the  partial 
derivatives. and then we solve these equations and whatever we get is the solution to this 
optimization  problem  ok.

 So, let us see let us look at a very simple problem let us say I tell you that consider all  
rectangles which have a perimeter of 20 which amongst those rectangles have the highest  
area very simple problem. So, so let us say there is a rectangle  a b length is b the width is 
a then what is the perimeter 2 a  + b that is 20 that is  Now the question is what is the 
maximum area  of  such  a  rectangle?  So,  what  is  my  problem then?  My problem is 
maximize the area which is a into b such that the perimeter 2 a + b is 20. So, this is my f 
the objective function, this is my g the constraint ok. so what will we do of course this  
can be solved in in just a line, but I am just writing down to illustrate what are like how a  
Lagrangian works. So, I write down my objective function  + the Lagrangian this  λ is 
called  the  Lagrange  multiplier  by  the  way  λ 20  -  2  a  + b  ok.

 Then we do what we do  so if you differentiate with respect to a what will you get you  
will get b - 2 λ is 0 if you differentiate with respect to sorry with respect to a you got this 
with respect to b what will you get you will get a - 2 λ is 0 and from this what will you 
get you will get 2 a + b is equal to 20 you will get back the constraint which you had the 
g What will the first two tell you? They will tell you that A is equal to B. Now you 
substitute this into this equation and you will get A equal to B equal to 5 and that is your 



solution, okay. That in a nutshell is Lagrange optimization. All these techniques, the four 
topics which I have touched upon in the last 30-35 minutes  Of course you should ideally 
grab a proper mathematics textbook and learn it properly, but I tried to cover it as much 
as possible as a prerequisite of what follows, which is the principal component analysis 
technique.

 That is what we look into in the next lecture. Thank you. See you in the next lecture.


