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 Welcome to this lecture on artificial intelligence in economics. In this lecture and the 
next, we will look at network economics. Now, there are two ways to view this problem. 
First,  we  look at  random network formation,  and the  other  type  involves  examining 
strategic network formation. Let's understand what the fundamental difference is between 
these two. Random network formation is where you have a bunch of players, and the 
links  between  the  players  are  formed  randomly.

 For example, the way COVID spreads. So, COVID spreads through a network. I am 
infected by you. I'm going to infect a few other people I come in contact with, and so on 
and  so  forth.

 Now, that's a random network. If I come into contact with a COVID patient, then, with a 
certain  probability,  I  may  also  get  infected  with  COVID.  So  there  is  a  connection 
between  that  person  and  me.  He  infected  me  with  COVID. 

 Now, in strategic network formation, on the other hand, it is a different paradigm. In this 
situation, two players establish a connection. Between them, if it is beneficial for both to 
do so. Instead of a link being formed randomly between two players, here the players are 
deciding to form a link. Where do we see such instances? Professional networks and 
trade networks are where we see instances of strategic network formation. Now, when we 
analyze strategic networks, there are essentially two issues that concern us. Of course, 
there  are  many  topics,  and  in  this  course,  I  can't  cover  everything.  I  would  like  to  
introduce  you  to  the  basics  and  the  most  fundamental  aspects  of  strategic  network 
formation. The two fundamental issues that are often in conflict, as we will see as we 
move  on,  are  stability  and  efficiency.

 Stability and efficiency are two important features. So, what is stability? Given a set of  
features and their utility functions, stability addresses the individual incentives of players 
to establish or sever ties. Whereas efficiency refers to the maximization of social welfare,  



it is concerned with maximizing the total payoff or total utility of all the players in the 
network.  We will  formally  define  these  terms in  a  few minutes.  Okay,  so  now let's  
formalize  and  get  acquainted  with  the  basic  notations.

 So, what do we have? We have a set of players, labeled 1 ,2 , ... , n.  Gn is the set of all 

possible  networks  that  can  be  formed  among  the  set  of  n  players.

 So,  there  are  all  the  possible  networks  that  can  be  formed.  The  set  of  all  possible 
networks is represented by Gn. Now the utility of player I depends on the network that 

has been formed. In different networks, I am connected to different people, and those 
different people are connected to all other people. The amount of payoff a certain person 
receives depends on the network in place, so the existing network determines the payoff 
for  a  person  who  is  part  of  it.

 So, if G is a network that is one of all the possible networks, then the UIG represents the  
utility of player I when the network is G. By the way, utility represents all benefits net of 
costs, as link formation also involves costs, as we will see. Anyway, the bottom line is  
that we have a bunch of players who can be thought of as the vertices of a graph. The 
payoff of any player depends on the graph that exists and the edges of the graph. The 
capital  "G"  and  "N"  denote  the  set  of  all  possible  graphs.

 Great!  Now, we see that  for  different  networks,  players will  have different  payoffs. 
That's fine. Now, the question is: what is a pairwise stable network? Now I'm going to 
introduce this  term.   Let's  understand it.  So,  let's  say we have a  network G.  So the 
network could be of this kind, let us say: I have player 1 connected to player 2, connected 
to  player  3,  and  connected  to  players  4  and  5,  something  like  this.

 So,  that  is  a  network.  Now,  a  particular  network  G  is  said  to  be  pairwise  stable.  
Remember, we had two fundamental issues that we want to discuss when dealing with 
networks, specifically strategic networks. So the first thing is stability, and the other one 
is efficiency. When it comes to stability, this is one notion of stability: pairwise stability.

 Now let's understand what pairwise stability is and when a network is called a pairwise 
stable network. A network is called pairwise stable if, for all edges, whenever there is an 
edge i, j in the network G, the payoffs of both players i and j are better off with the edge 
existing than without it. Which in turn means that both i and j have no incentive to delete  
the  edge  {i , j}.  Remember,  they  can  delete  the  edge  {i , j}.

 I am connected to you.  I can choose not to connect with you. So, if any of them have an  
incentive to delete the edge {i , j}, they can. A pairwise stable network is one in which no 



two players connected by an edge have an incentive to delete that edge in the graph.

 That's number one. Also, if there does not exist an edge ij, then the payoff of i and the 
payoff of j must be considered. If the payoff of i is greater with edge ij existing, then the 
payoff of j will necessarily be smaller with ij existing, which means there cannot exist an 
edge that  is  not present in the network.  Such that  if  an edge comes into being, both 
players involved in the edge will be better off. Okay, I repeat once more: what does this 
tell you? It tells you that if an edge does not exist in the graph, in a pairwise table graph 
or  a  pairwise  table  network,  then.

Bringing that edge into the network, while keeping everything else constant, cannot make 
both people or both players involved in the edge better off, nor can it make even one 
person better off while keeping the other person as good as he was. So, if I introduce an 
edge that is not present in a pairwise stable network, it must be beneficial for one person 
and harmful for the other. So, what is a pairwise stable network, to put it very simply? It  
is a network in which no two players connected by an edge have an incentive to delete  
the edge, and no two players not connected by an edge have an incentive to establish one 
between  them.  Okay.

That's pairwise stable. Now, this notion of pairwise stability has some limitations. Well,  
first, pairwise stability assumes that no player in a pairwise stable network will benefit  
from  severing  or  deleting  an  edge.

 So, as we saw in the first example, no player has an incentive to delete an edge. In the  
second example, we observed that we won't have a pair of players who are both better  
off, or one player being better off while the other player is at least as good as he was, by  
establishing a new edge. However, they may benefit by deleting a few links at a time; 
yes, for one edge and one player, it's true. But what if they bring two or three edges at  
once?  That  might  be  profitable.

 So, I don't know. Also, pairwise stability assumes that deviations occur by two players at  
a time. One or two players at a time. But what if there is a complex reorganization? What  
if ten players decide to change, form, or delete links? So the idea of setterist parabus goes  
away.

   Correction: So the idea of setterist parabus disappears. So, these are essentially the 
limitations of pairwise stability. Another very conspicuous limitation is that a pairwise 
stable network may not exist. Let's take a look at this four-player network. So, if I'm here
—let's  say  I  start  here,  at  the  point  where  the  tick  is.

 So the payoff is 0, 7, 0, and 7.  Now, if these two players form a link, their payoff will 



increase by 7. So, they will form a link. So if I'm here, if I'm in the tick, I will connect to  
the hash network. Now, if I'm in the hash network, you can see that these two players will 
have  an  incentive  to  form  a  link.

 Then, they will form a link. So I will come to the star network, let's say, let's call it that. 
I'm just naming them. But if I'm in the star network, you can see this player; if he decides  
to  snap  this  link,  he's  going  to  get  11.

 So, he will  do that.  So I will  end up in,  let's  say, the square network or something 
similar. Okay, so tick, hash, star, and square. I will keep moving between these networks, 
and once I return to the square network, I will go back to the tick network. I will continue 
cycling between these four networks without settling anywhere. Therefore, none of these 
four  networks  is  pairwise  stable,  and  a  pairwise  stable  network  does  not  exist  here.

 Okay, next: an efficient network. Now, what is an efficient network?  Given a set of 
players and a profile of utility functions u1 ,…,un, along with a network G that belongs to 

the set of all possible networks, a particular network is called efficient if the sum of the 
utilities of all the players is greatest for that network. The sum of the utilities of all the 
players in the network is greater than the sum of the utilities of all the players in any other 
network belonging to Gn. So, this is the network that maximizes the total payoff for all 

the  players  in  the  network.  And,  of  course,  an  efficient  network  will  exist.

Because what am I doing here? This is the network that provides the highest total utility. 
However, how many networks are possible? If I have capital N players, then the total 
number of possible networks will also be finite, given that I have a finite number of 
players. Therefore, if I have a finite number of players, I also have a finite number of  
networks, which allows me to compare them and identify the network with the highest  
total utility. I refer to that network as the efficient network. There can be more than one 
efficient network, but there will be at least one efficient network. Then, there is the Pareto 
efficient network. Now, a Pareto efficient network is defined as a specific network G that 
will  be  referred  to  as  Pareto  efficient.

 Again, we have a set of players and a set of utility functions. A particular network G is 

called Pareto efficient if there does not exist any other network  G’ such that  ui(G
') is 

greater than or equal to  ui(G) for all i, with a strict inequality existing for at least one 

player.  So,  what  does  this  mean? The strict  inequality  holds  for  at  least  one player.

 A particular network is called Pareto efficient if no other network exists such that all  

players are better off in the other network G’ than in G, or if all players are as well off in 

G’ as in G, with one player being better off. So, if such a G’ does not exist, then G will be 



called a Pareto-efficient network. I will repeat it once more. A network G is called Pareto 

efficient if there does not exist any other network G’ such that all players are at least as 

well off in  G’ as in G, with one player being strictly better off. Great! Now, is there a  
connection  between  efficiency  and  Pareto  efficiency?  The  answer  is  that  efficiency 
implies Pareto efficiency. That is, if a network is efficient, then it is necessarily Pareto 
efficient.  What's  the  logic?  The  logic  is  very  simple  and  straightforward.

 Let's say network G is efficient; this means... G is defined as the value that maximizes 
the sum of the utility for all the players. The summation of the utility under G is greater 

than the summation of the utility under G’. This means that if I deviate from G to G’, it 

cannot happen that all players are better off. In other words, if I deviate from G to G’, it is 
necessary that at least one player will be worse off. At least one player will be worse off,  
or  perhaps  all  players  will  be  equally  well  off.

 In that case, both G and G’ are efficient. If I deviate from G to G’, and G is a uniquely 
efficient network, then at least one player will be worse off. It cannot happen that all 
players are equally well off if at least one player is strictly better off by deviating from G 

to  G’.  That's  an  impossibility,  which,  in  other  words,  implies  that  G is  also  Pareto-
efficient. So, if a network is efficient, it is also a Pareto-efficient network. Great! Let's  
take a quick example to understand it. Again, let's set up a four-player network. You can 
see  that  the  red  network,  which  is  Pareto  efficient,  is  indeed  efficient.

Why? Look at the total utility: 3+3+3+3=12. So, that is 12. No other network has a total 
utility  of  12.

So, this network is both efficient and Pareto-efficient. It is efficient, and as we saw in the 
previous slide, it is also Pareto efficient. If it is Pareto efficient, it need not be efficient, as 
we  can  see.

 Look at the green network. The green network is Pareto efficient. Deviating from the 
green network, we cannot end up in a situation where all the players are equally well off,  
with at least one player being strictly better off. Therefore, the green network is Pareto 
efficient. If we move from the green network to the blue network, players one and two 
are  worse  off.

 In the blue network, they have 2.5, whereas they had 3.25 in the green network. If I  
move from the green network to the red network, again, both 1 and 2 are worse off. They  
had  3.25  in  the  green  network.

In the red network, they have 3, which is less than 3.25. Fine. So, we can see that the  



green  network  is  indeed  Pareto-efficient.

 But is the green network or the red network pairwise stable? The only pairwise stable 
network is the blue network. See, no two players or any player has an incentive to snap 
an edge or a tie, and no two players have an incentive to form a new edge. By the way, 
the efficient network need not be pairwise stable. Look at the red network; it is efficient, 
but  players  1  and  2  have  an  incentive  to  form  a  new  edge  between  them.

 The red network will transition to the green network because the red network is not  
pairwise stable. Here, two players, 1 and 2, will benefit by forming an edge between 
them.

 They will end up getting 3.25 and 3.25 instead of 3 and 3. Similarly, the green network is 
also not pairwise stable. Because 3 and 4 will have an incentive to form an edge between 
them,  they  had  2  and  2.

 By forming an edge, they will have 2.5. 2.5, okay, great. So, we see that efficiency and  
pairwise stability can be at odds. So, here the pairwise stable network is not efficient. The 
efficient network is not pairwise stable. So we can be torn between the two. Great! So 
now we look at a particular kind of network that is characterized by something called a 
distance-based  utility  function.

 Then we will try to see. Whether they constitute what are the efficient and pairwise 
stable networks in this situation, when we have distance-based utility functions. Let’s go 
for it. So, what is the basic idea behind distance-based utility functions? The basic idea is 
that  a  player  derives  utility  from  direct  and  indirect  connections,  right?  The  utility 
deteriorates  with  the  distance  between  the  individuals.

 So let's say B is a mapping from the finite set {1 , ... , n}→R, which is a payoff function. 
What is B. Lij? Denotes the benefit I derive as a result of connecting with J, where Lij is 

the minimum path distance between i and j. That's how B is defined; B is a function.

 Also, there is a cost to forming a link; that particular cost is denoted by C. So, what is the 
utility of player I? Given a network G, the utility of player I is given by the following. 
What utility does he derive from connecting with player J? It is  B (Lij). So, what is the 

total  benefit  he  is  getting  from all  his  connections?  Well,  it  is  simply  given  by  the 
summation of J belonging to N, where j≠i, of B (Lij). Okay? Great. How many links is 

he forming, minus? Well, it is equivalent to his degree. So, Di is the degree of player i, 

which is the number of edges associated with player i. This represents the number of  
edges in which he is involved, specifically in the formation of Di edges. So, C (Di) is the 



total  cost  incurred  by  player  i,  and  this  represents  the  total  benefit.

 This is the total cost: benefit minus cost. That's the utility of player i in a network G,  
okay?  Obviously,  Bk>Bk+1.  What  is  B?  B  is  the  benefit,  and  what  is  taken  as  an 

argument? It takes in Lij, which is the shortest distance between i and j; the shorter the 

shortest  distance,  the  greater  the  utility.

 That goes without saying. Great. So, if this is the situation, let's look at what the efficient  
networks  are.  Given  the  distance-based  utility  function,  the  unique  efficient  network 
structure is represented by this. If C, the cost of forming a link, is less than B1−B2, where 

B1 is the benefit a player receives from another player when the shortest distance between 

them  is  1,  then.

..  B2 is  the  benefit  a  player  receives  from connecting  with  another  player  when the 

shortest  distance between the two players is  two.  So,  if  C is  less  than  B1−B2,  then.

.. Then a complete network is the most efficient network. What is a complete network? 
Where everyone is connected. If C lies in this interval, then a star encompassing all nodes 
is an efficient network.  Also, if C is greater than this, then an empty network is an  
efficient  network.

Let's  try  to  prove  this. 

Let's look at number one. Let's try to prove number one. So in an efficient network, what  
am I trying to do? I'm trying to maximize the total utility of all the players involved in the 
network. So, if C is less than B1−B2, what does it mean? So this implies that B1−C  is 

greater than  B2. Now, what does this imply? If you have any two players who are not 

connected, what is the maximum utility a player can derive? So, if I have a player i and a 
player j. If they are not connected, what is the maximum utility i can derive from j? The 
answer is B2, right? That's the maximum utility i can derive from j without being directly 

connected.  Now,  if  he  directly  connects,  then  what  will  be  the  payoff  from  this 
association between i and j? What is the maximum benefit i can derive? As in, by being 
associated  with  j  directly,  the  answer  is  B1−C .

 Here, B1 is the benefit, and C is the cost of forming the link between i and j. If this is the 

benefit of forming a direct link with j, this is the maximum benefit I can achieve through 
an indirect association with j. Now, if B1−C is greater than B2, Then it is always rational 

for player i and player j to form a direct link between them, which means that any pair of  
players you choose will have an incentive to form a direct link between themselves. In 



other words, we will have a complete network. Not only is it an incentive; maybe I placed 
that  incorrectly.

 What is my objective here? My objective is to maximize total welfare. I will just correct 
myself on this. If B2 is the total, then what is the total benefit? j and i both derive 2B2. i 

get  B2,  and  j  gets  2B2 if  they  are  not  connected.

 That is the maximum indirect benefit of the network. And if there is a link between 
them, what is the maximum benefit? Both of them will receive  B1−C  so the total is 

2B1−C . That's the total utility of i and j. If  B1−C is greater than  B2, then  2B1−C  is 

greater  than  2B2.  In  other  words,  adding the  edge  increases  the  total  utility  of  both 

players. So, by that logic, we'll have a complete network, meaning we'll have an edge 
existing  between  any  pair  of  nodes  or  any  pair  of  players  in  the  network.

 Okay, let's move on to number two. What is number two saying? Number two states that 
if C lies in this interval, then the efficient network is a star. A star looks like this. With 
one  central  player  and  other  peripheral  players.

 So, this is my central player. The other players are my secondary players. So this kind of 
structure  is  the  uniquely  efficient  network.  Why?

Let's  see.  Let's  try to prove this.  If  I  have one player at  the center and a number of 
peripheral players, let’s say there are n players. What is the total utility of this network?  
Let us try to understand it. What is the purpose of the central guy? Well, it is. So, you  
start with the total utility if there is a star network. So, what is u star? What is the utility  
of the central player? Well, he has formed n−1 links, and from each association—let's 
say with this association—what is his benefit? What is the benefit he is deriving from this 
association, the one I have marked—this one, where it is b1 minus c? That's the benefit 
the central player is getting from this particular peripheral player, and there are n−1 such 
peripheral  players.  So,  this  is  the total  payoff  for  the central  player.  What  about  the 
peripheral players? What about this player? Let's say, how much is he getting? Well, he's 
directly  connected  to  the  central  player,  so  he's  getting  B1.

 He is connected indirectly to n−2 other peripheral players via the central player, and the 
distance between any two peripheral players is B2. So, it is simply n−2B2. So, this is the 

payoff that this particular peripheral player is receiving, and how many such peripheral 
players are there? n−1. So, this is the total payoff of all the players combined in a star 
network. Let us simplify this a little. So, if I take the n−1 out, what do we end up with? 
2B1 plus, oh, by the way, there is also a −C . Remember, because every peripheral player 

also forms a link, every peripheral player also forms a link, so that's −C . Therefore, this 



is  2B1+n−2B2−2C .

 That's what we are left with. If I just take the 2 outside, I'm left with B1+n−2 divided by 

2B2−C  is greater. So, this is applicable if the network is a star network. So, I have a net  

with N players. If it is a star network, this is the payoff I end up getting. Now, why is this  
payoff the maximum I can receive? Can't there be another network where the total utility 
is  larger  than  this?  Let  us  create  another  network.

 Let us say I have another network with m links, where m is greater than n minus 1, I will  
explain where we are going. Let's say I take another network with m links; we'll call this 
network  G.  Now,  what  is  UG? Remember,  there  are  m links,  so  there  are  m direct 
connections. If it's a direct connection, every player connected via this link will receive 
B1−C .

 Therefore, what is the total utility due to these links? Well, it is simply... To calculate  
B1−C , there are m such links, so we multiply by m. Therefore, this is the total utility 

from direct links, plus the utility from indirect links. Now, how many pairs of players are 
there who are not directly connected? There are m links and n players.  So,  the total 

number  of  possible  pairs  of  players  is  
n(n−1)
2

.

 So, n−C−2−m players are those who are not directly connected by an edge. So, if they 
are  even  indirectly  connected,  what  is  the  maximum  benefit  due  to  the  indirect 
connection? It is B2. So, this is B2. Okay, so this is the maximum benefit that I can get, so 

UG  will  be  greater  than  or  equal  to  this.

 Okay, great. Now I'll have to prove what uG−u
∗ is. By the way, let's proceed with this: 

what was u∗? u∗ was this, and this is uG, so what is uG−u
∗? I am sorry, but this will be 

less than that, right? So, this is the maximum indirect benefit that is possible. So, let me 
do it this way. So, this will be the benefit from direct links; this is the maximum benefit  
from  indirect  links.

 So,  uG will  be less than or equal to this.  That is  the maximum; the right-hand side 

represents the maximum utility that a network with m links can have. So, what is uG−u
∗? 

So this will be less than or equal to 2m; this will be 2B2. Let me explain this a little more, 

as I think I messed up a bit here. Let us say that if there are two players who are directly 
connected,  each  player  receives  a  payoff  of  B1−C .

 Due to direct links, it is 2B1−C for each link, and there are m links. So this is 2B1−C . 



For any pair that is indirectly connected and at a minimum distance of 2, what is the 
payoff? To each, it is B2. So when they put it together, it is 2B2. So, the total payoff is 
nC2−m;  that's  the  total  number  of  pairs  that  are  not  directly  connected.

 So that  is  multiplied  by  2B2.  So  there  will  be  a  2  here,  which  I  initially  forgot.  I 

apologize  for  that.  So  this  is  nC2;  nC2 is  
n(n−1)
2

−m.

 -u∗.  What was  u∗? Let us take a look; it  was  (2n−1)B1+(n−1)(n−2)B2−2−1 are 

okay. Now let us try to simplify this a little bit more and see what we end up getting. So, 
this is equal to what we end up getting if we take B=1. So, we have 2m here. If we take 
b² common, what do we get? So, we have n(n−1)−2m, and here I have n−1 and n−2.

 And if I take c, then I have 2n−1−2n. That's what we end up with. Now let's try to see 
it. So, if I take 2 out, this is m−n−1. What do we have here? If I take n−1 common, then 
I have 2n−1−2m. Again, here I have 2cn−1−m. So, what do we have here?  So, if I 
have 2B1−2B2 and we see that f, I take m−n−1 out; what does it lead to? B1−B2−C . In 

the proposition, we have seen that if C is greater than  B1−B2,  then C is greater than 

B1−B2 here. So, this and this are necessarily negative since C is greater than  B1−B2. 
What about this? I have taken m to be greater than n−1, so this is necessarily positive. 
Therefore, the entire expression becomes less than or equal to 0, which means uG is less 

than  or  equal  to  u∗.

 If m is greater than or equal to n−1. This is what the proof becomes. It's fairly simple, 
right? By the way, what if m is less than n minus one? What happens next? Well, let's try 
to  see  it.  Let's  say  we have  two stars  that  are  mutually  exclusive.  So,  they  are  two 
separate  components.  So,  let's  say  the  first  star  has  k₁  and  the  second  star  has  k₂.

 Then, what is the total utility of this network, G? So we have seen that for a particular  

star, it is given by this. So, 
k1 – 1

2
+.. . And if there is a unified star, then u∗, well, this will 

be  , B1+
k1+k2−2

2
×B2−C+.. ..

.. Ah, I am sorry, yeah, this. It can be easily proved that u∗ is greater than uG. This means 

that if I have two disconnected components, even if both are stars, remember that in any 
component,  the maximum utility occurs when it  is  a star.  Therefore,  if  we have two 
disconnected components, the unified star will still have a higher utility. Now think about  
it: if there are n players and I have fewer than n minus one links, then there will be at  



least one player left out who will be a solitary player. This, in turn, means that for m less 
than n minus one, I am in this two-component paradigm, and I can prove that the star 
yields the best; a unified star yields more than two components. So, in other words, for m 
less than n minus 1 links, this implies two components because it necessarily implies that 
it  cannot  be  a  completely  connected  graph.

 Okay, then the unified star necessarily leads to a higher utility, so it is definitely the 
uniquely efficient network for m<n  and  m≤n−1 . I have provided a rigorous proof for 
m>n−1 .  This is the logic. And what happens to the last part of the theorem? What 

occurs if  C  is greater than  B1+
n – 2
2
B2 ? So, you see that the highest utility a player can 

achieve,  the  best  network  is  when  it  is  a  star.

 Here’s a corrected version of your sentence:  And this is the payoff. In other words, I can 
say that for all  g  belonging to  Gn, this utility, which we obtained as  2n−1 , is less than 

C . If  C  is greater than this, then it turns out that the total utility will be negative,  
meaning uG will be negative, or in other words, uG is less than or equal to zero. However, 

Why will I have a negative payoff in the network? If I want to maximize the total utility 
of all the players and I see that I'm getting a negative payoff, I can always choose a 
network  where  there  is  zero  payoff,  which  is  the  empty  network.

 So, if C is strictly greater than this, I will end up with negative total utility networks. So 
my  efficient  network  will  become  an  empty  network.  So,  this  brings  us  to  the  last 
statement  of  the theorem: the empty network is  my unique efficient  network if  C is  
greater than that threshold. Great, so we have looked into the efficient networks for when 
we have distance-based utility functions. In the next lecture, we will try to determine if 
we have distance-based utility functions and what the pairwise stable networks are. Is 
there a conflict between pairwise stability and efficiency? We'll also examine another 
type of network model, called the co-authorship network model. But that will be in the 
next lecture. See you at the next lecture. Thank you.


