
Artificial Intelligence for Economics

Prof. Dripto Bakshi

Humanities and Social Sciences

Indian Institute of Technology Kharagpur

Week – 01

Lecture - 02

Lecture  02  :  The  Stable  Matching  Algorithm

 Welcome to lecture two of artificial intelligence for economics. In lecture one we looked 
at two examples of network data of interpreting network data. In today's lecture we will  
look at something completely different.  We look at what's called the stable matching 
algorithm. Now what is that? It's basically a matching problem as the name suggests but  
what exactly do we mean by that? Let's say we have two heterogeneous populations x 
and  y.  It  could  be  a  set  of  boys  and  a  set  of  girls.

 Every  element  in  x  or  every  member  of  set  X  has  a  preference  ordering  over  the  
elements of set Y. Similarly, every element of set Y has a preference ordering over the 
elements of set X. If that's the case, who should be matched with whom? That's the kind 
of question which we want to answer in this lecture. Where do we see situations like this? 
Well, in the marriage or dating market, let's say there are a bunch of men and a bunch of  
women, every man has a preference ordering over the set of women and every woman 
has  a  preference  ordering  over  the  set  of  men.

 Labor market, let's say there are X CEOs and X firms or Y firms and the CEOs have a 
preference ordering over the set of firms and every firm has a preference ordering over 
the set of individuals or CEOs. Credits and banks, right? So there are firms and banks. 
The firms have a preference ordering over which bank they want to borrow from. And the 
banks also have a preference ordering over the set of firms. Similarly, we have buyers  
and  sellers,  so  on  and  so  forth.

 So these are typical examples of where we encounter the need for matching. There could  
be many to one problems too. For example, campus placements. There are students and 
then there are firms who visit  the campus.  The students  definitely have a preference 
ordering  over  the  set  of  firms  who  have  come  to  recruit.

 The firms also have a preference ordering over the set of students based on their GPA or 
other credentials. Great. So, let's think of a particular context, let's think of marriage or 



the  dating  market  which  is  the  first  example  I  cited.  So,  we  are  going  to  make  a 
simplifying  assumption,  we  make  an  assumption  of  monogamy  that  is  one  to  one 
matching,  one  boy  for  one  girl,  one  girl  for  one  boy.  We  also  assume  equal  sized 
population that is the set of boys and the set of girls are they have same cardinality.

 If that's the situation the question is how to optimally match, but when I am using the 
word optimal what exactly do I mean by that? What do I mean by optimal? Let's look at 
an example. a set of two boys and two girls, the two boys are named Rahul and Aman 
and the two girls are let's say Anjali and Tina. Now every boy remember has a preference 
ordering over the set of girls, so Rahul prefers Tina the most and then Anjali, Aman also 
prefers Tina the most and then Anjali  Tina prefers Rahul and then Aman, Anjali prefers  
Rahul and then Aman and this can be represented by this easy graph or network whatever 
you might call it.  Now the question is if this is the preference orders of the different 
individuals, how to optimally match? What are the possible matchings? Well these are 
my two possible matchings. Rahul matched with Anjali,  Aman matched with Tina or 
Rahul  matched  with  Tina  and  Aman  matched  with  Anjali,  correct?  Fine.

 Let's look at matching one, the first matching. Rahul-Anjali and Aman-Tina, let's look at 
this matching. Is there any problem with this matching? Let's understand, let's look at the 
preference relationships.  preference orderings.  Rahul  and Anjali  and Aman and Tina, 
these  are  my  two  pairs.

 Who does Rahul prefer the most? Rahul prefers Tina the most. Who does Tina prefer the 
most? Tina prefers Rahul the most. So in matching one, Rahul is paired with Anjali but 
Rahul likes Tina more. Tina is paired with Aman and Tina likes Rahul more than Aman. 
So in this case, both Rahul and Tina prefer each other over their current mates or current 
partners,  which  means  they  will  break  out  of  their  current  partnerships.

 Rahul is paired with Anjali. Rahul has all the incentive to break out from that partnership 
if Tina says yes. Because why? Because Rahul prefers Tina more than Anjali. Tina on the 
other hand has an incentive to break out of her partnership with Aman because Tina 
prefers Rahul more than Aman. So Tina would be more than eager to break out if Rahul 
says  yes.

 Now both Rahul and Tina are eager to break out. So both of them will say yes and they 
will break out of their current partnerships. So matching one is unstable. We say that 
given a matching M, two individuals X and Y form a rogue couple if they prefer each 
other over their mates. So, in this case, Rahul and Tina in matching 1, Rahul and Tina 
form  a  rogue  couple.

 Matching 2 by the way has no row couples. Great. Now that we know what a row couple 



means, here is the definition. So what is a stable matching? A perfect matching is where 
all individuals are paired. A stable matching is a perfect matching such that there are no 
row  couples.

 So matching 1 is not a stable matching. Matching two on the other hand is a stable 
matching.  Great,  let's  move on.  Let's  look at  one more  example.  Let's  take  a  movie 
example.

 Let's say we have these four movie stars Akshay, Salman, Amitabh and John and let's 
say there are two movies which are being made. and in each movie there will be two 
stars.  Now  who  will  be  paired  with  whom?  Now  what  is  their  preference  relation 
preference ordering? Well Akshay prefers Amitabh the most then Salman then John as 
you can see from here.  Akshay prefers Amitabh the most this is  one I  am sorry.  So 
Akshay  prefers  Amitabh  the  most,  then  Salman  and  then  John.

 Similarly, Salman prefers Akshay, then Amitabh, then John, Amitabh prefers Salman, 
then  Akshay,  then  John.  Well,  John's  preferences  are  inconsequential  because  he  is 
everybody's last choice. No offences against John, but then this is just hypothetical. Okay 
let's  move  on.  The  theorem  is  there  does  not  exist  a  stable  match.

 If this is the preference ordering and if we want to pair, if we want to form two pairs 
there we can't do it. We can't form a stable match. Okay let's see. Assume that there exists 
a  stable  match  n.  So  we  are  going  to  prove  by  contradiction  here.

 Assume that there exists a stable match. So without loss of generality,  John will  be 
matched with somebody in that stable matching. Let us say John has been matched with 
Akshay without loss of generality. WLOG is without loss of generality. Now if John is 
matched  with  Akshay,  then  by  default  Salman  is  matched  with  Amitabh.

 great,  but then look at  the look at  the preference relations preference orderings.  So, 
Salman is matched with Amitabh, Akshay is matched with John let us go back to our 
preference ordering. Salman is matched with Amitabh and Akshay is matched with John, 
but Akshay prefers Amitabh  Salman prefers, sorry Akshay is matched with John. So, 
Akshay  prefers  John  the  least.  So,  Akshay  will  definitely  want  to  move  out.

 Salman on the other hand prefers Akshay the most. So, Akshay and Salman will form a 
rogue couple. Akshay has been matched with John, let us say without loss of generality, 
then Akshay prefers John the least, so Akshay wants to break out and Salman prefers 
Akshay the most, so Salman and Akshay will form a rogue couple. Salman also would 
want to break out because he prefers Akshay more than Amitabh. Great, so this is not, 
there  cannot  be  a  stable  match,  so  M  is  not  stable.



 And we can prove this for, if I match John with, this is an exercise for all of you, if you  
match John with Salman and then see if you can find a rogue couple, you will be able to 
find one. No matter whom you match John with, there will be a rogue couple. Great, so 
this was my preference orderings, I cannot find a stable match. this just gives you an 
inkling towards a more general result which I am going to talk about now. This is the  
more  important  theorem.

 This theorem states that a stable match will necessarily exist if the preference list can be  
represented  by  a  bipartite  graph.  What  is  a  bipartite  graph?  That  is  if  we have  two 
mutually exclusive sets and  any member of set 1 has a preference ordering over the  
individuals  of  set  2  and  any  individual  of  set  2  has  a  preference  ordering  over  the 
individuals of set 1 in such a setting a stable match necessarily exists okay if in this case 
which we just talked about it  was not a bipartite scenario right.  We cannot find two 
distinct,  two  mutually  exclusive  sets  such  that  every  individual  in  that  set  has  a 
preference ordering over others, it is not the case here, this is not a bipartite graph ok. So,  
now this is theorem 2. Now we have seen that if it is not bipartite, we have found an 
example  where  a  stable  match  does  not  exist.

 But does it tell us for sure that if there is a bipartite graph representing the preference 
orderings, then we will necessarily have a stable match? The answer is yes and we are 
going to prove that. So in the next part of the lecture what we will do is the following.  
We will try to prove that in such a scenario a stable match necessarily exists and we will 
also propose an algorithm to find that stable match. But we will go the other way around. 
We  will  first  propose  the  algorithm  and  then  claim  that  the  algorithm  works.

 We'll first propose an algorithm to find the stable match and then prove the existence of 
the stable match by proving that the algorithm necessarily works under all  scenarios. 
Okay? Great. So first, I'll try to propose an algorithm for finding a stable matching. But  
while proposing the algorithm, I will take help of an example. So let's say we have five 
girls  and  five  boys.

 The girls are named A, B, C, D, E and the boys are named 1, 2, 3, 4, 5. These are my  
preference orderings. Every boy has a preference ordering over the girls. So, this is boy 
1's preference ordering let's say. So, boy 1 prefers girl C the most and then B and then E 
and  then  A  and  then  D.

 Similarly,  every  boy  has  a  preference  ordering.  Similarly,  every  girl  also  has  a 
preference ordering over the set of boys. Girl A for example, prefers boy 3 the most and 
boy 4 the least. Okay, fine let's move on. So, if this is the situation can we find a stable  
matching  that  is  a  matching  where  there  will  be  no  rogue  couples.



 So, first which is what usually we try to do, we will try to propose a greedy algorithm. A 
greedy algorithm is the most intuitively obvious algorithm. What is a greedy algorithm? 
A greedy  algorithm is  where  we  optimize  stepwise  and  we  don't  go  back.  So  we'll 
propose  a  greedy  algorithm and  we'll  try  to  guess  or  we'll  try  to  see  if  this  greedy 
algorithm  works  or  not.

 Great. Let's begin. Start with boy 1. So this is the algorithm. We start with boy 1 and 
allocate  the  best  possible  girl.  That  is,  what  is  best  possible  girl?  the  highest  in  his 
preference list. Allocate him that girl. Next, look at boy two and match him with the best 
available  girl.

 Again, what do I mean by best? According to his preference list. Remember, these are 
the preference lists. So what's gonna happen? So who does boy one prefer? By the way, 
and we are going to carry on like this. So, let us see what outcome the gradial algorithm 
gives  us.

 So, who does boy 1 prefer the most? C. So, I am going to match 1 with C. That is what I  
do.  1  likes  C  the  most,  1  with  C.  Then,  I  will  come  to  boy  2.

 Who does boy 2 like the most? A. Is A available? That is, is A already matched? No, A 
is available. So, I am going to match 2 with A. So, C and A have been taken. Now, I  
come  to  3,  boy  3.  Who  does  boy  3,  whom  does  boy  3  like  the  most?  D,  girl  D.

 Is girl D available? Yes, only C and A have been already matched, girl D is available, so 
I am going to match 3 with D, great, so C, A, D have been taken. Now I come to boy 4,  
who does boy 4 like the most? A, but A has already been matched with 2, so I cannot do 
that. Next C, well C has already been matched with 1, so I cannot do that. then comes D, 
well D has already been matched with 3, I cannot do that either. So, 4 will be matched 
with  the  best  available  girl  which  is  B,  right.

 And coming to 5, 5 will be matched with the only girl who is left which is E, ok. So, that  
is it, that is the match which we get by using the greedy algorithm. But now the question 
is, is this matching which we have got, is this a stable match? How do we inspect that? 
We try to look at these couples and see if any of these couples form or is a rogue couple. 
Okay, so let's inspect and it turns out  that boy four and girl C form a rogue couple.

 Let's understand why. Let's look at boy four and girl C. Who is four matched with? Four 
is matched with B and one is matched with C. Fine. Now, who does four prefer the most? 
4 prefers, 4 is now hitched with B right, but 4 prefers C more than B, 4 prefers C more 
than  B.  C  right  now is  matched  with  1,  but  C  prefers  4  the  most.  see  look  at  C's 



preference ordering C prefers 4 the most and 4 prefers C more than his own partner 
which is B so C will definitely want to break out because C prefers 4 the most and 4 will  
also break out because 4 prefers C more than the current partner which 4 has which is B 
So  which  means  boy  four  and  girl  C  will  form  a  rogue  couple.

 So we see that the greedy algorithm gives us a matching which is not stable. So the 
greedy algorithm has  failed.  So what  do we do? Naturally  we'll  have to  propose  an 
alternative  algorithm.  So  here  we  are  proposing  our  stable  matching  algorithm.

 Please understand this algorithm carefully. You can pause the video and read the slide or  
listen to this once more. So this is how the algorithm goes. Every day a boy will go and 
stand in front of the balcony of the girl he likes the most. Every day the boy, every boy, 
any boy will go and stand in front of the balcony of the girl he likes the most. ok the girl  
the each day a girl can either tell a boy standing in front of the balcony there could be  
more than one boy standing in front of a girl's balcony the girl can tell the boy come back  
next day or reject ok once the girl says reject to a boy the boy crosses that girl off from 
his  list  of  possibilities  and  never  goes  back  to  that  balcony  ever.

 This continues until every girl has exactly one boy standing in front of the balcony. 
When there is exactly one boy standing in front of each girl's balcony then the algorithm 
terminates. This is the stable matching algorithm and let's see if this works. and initially 
all girls are in the boys list he will keep the boy will keep crossing a girl out once the girl  
says reject okay fine let's  look at the iterations now let's apply this algorithm on the 
example which we have got. So this is our preference lists remember so let's see this is 
day 1 what's gonna happen  Every boy will go and stand in front of the balcony of the girl 
he  likes  the  most.

 So, one, whom does one like the most? Boy one. Boy one likes C. So, boy one goes and 
stands in front of C's balcony. Whom does two like the most? A. So, two goes and stands 
in front of A's balcony. Whom does three like the most? Where does D go? D goes and 
stand in front of sorry 3 goes and stand in stands in front of D's balcony. What about boy 
4?  Boy  4  likes  A  the  most  and  boy  5  also  likes  A  the  most.

 So,  both  of  them again  go and stand in  front  of  A's  balcony.  So,  this  is  how it  is  
operating. Great. 2 knows that both 2, 4 and 5 prefer her the most. Girl A knows that boys 
2,  4  and  5  prefer  her  the  most.

 Now look at girl A's preference ordering. Whom does girl A prefer the most amongst 
these boys 2, 4 and 5? Well clearly girl A prefers 5 the most. Okay, so girl A knows that  
5 is available to her, then why should she bother about boys 2 and 4? So what will she 
say? She will say reject to 2 and 4. Okay, she will say reject to 2 and 4. So 2 and 4 will  



now, what will 2 and 4 do? Boys 2 and 4, what will they do? well 2 and 4 will cross A  
out of their list so like this A is out of their list now mark A red fine now day 2 comes in  
day 2 again every boy goes and stands in front of the balcony of the girl he likes the most 
in his list in his list so again one goes in front of C's balcony 2 will now go in front of B's  
balcony, 3 will now go in front of C's balcony, 4 will now go in front of C's balcony, 5 in 
front  of  A.

 So this is what happens now. Now C is having 2 boys standing in front of her balcony, 1  
and 4. Now whom does she like more? Well C likes 4 the most and she knows that right 
now she is the most preferred girl in boy 4's list. So why should C bother about boy 1? 
Why should girl C bother about boy 1? So girl C rejects boy 1. So boy one now crosses  
out  C  from  his  list.

 So  these  are  my  cross  outs  now.  Right?  Fine.  Now  again,  now  day  three  comes.  
Everybody goes, every boy goes and stands in front of the balcony of the girl he likes the  
most in his list. Okay? Remember, if you look at boy one's list, C is not there anymore.  
So where will he go? He will go and stand in front of B's balcony. 2 again will go and 
stand in front of B's balcony, right? So 1 and 2 both go and stand in front of B's balcony, 
right?  You  can  see  that.

 3 will go in front of D's balcony, 4 will go and stand in front of C's balcony because A is  
not there in 4's list anymore. five again will go and stand in front of A's balcony. So this  
is how the balconies look like now. Now B has two men standing in front of her balcony, 
one  and  two.

 Look at B's ordering, B's preference ordering. Between one and two, who does B prefer? 
Well, B clearly prefers two more than one, right? And B knows that right now she is  she 
tops in the preference list of two. If that's the case, why should she bother about boy one? 
So she rejects boy one. So B will reject boy one and boy one in turn will cross out B from 
his list. This is the updated list now. Great, what happens next day? Where will boy one 
go?  in  front  of  the  most  preferred  girl  of  his  list,  these  have  been  crossed  out.

 So, boy 1 goes and stands in front of E's balcony, 2 goes and stands in front of B's 
balcony, 3 in front of D's balcony, 4 in front of C's balcony, 5 in front of A's balcony.  
This  is  what  we  have.  Now,  we  have  the  terminating  condition.  We  have  one  boy 
standing in front of  or every balcony has exactly one boy standing in front and remember 
this  was  my  condition  for  termination  of  the  stable  matching  algorithm.

 So, this is where the algorithm terminates fine. Now, is this a stable match? Is this match 
which we have got now? Is this stable? Remember we had got a similar match using the  
greedy algorithm which turned out to be unstable because we could find a rogue couple. 



but this match which we have got let's see if this is stable and the answer is if you take a 
look at the preference of the boys and the preference of the girls and if you take a look at 
this matching it indeed turns out to be stable you will not be able to find any rogue couple 
in this matching. I will urge all of you to take a little pause and work it out yourself, try to  
find a rogue couple and you will see that you cannot. Now the question is fine, we have  
proposed  an  algorithm,  now  let  us  look  at  some  desirable  properties  of  the  stable 
matching algorithm and this in turn will kind of make it clear that  this algorithm works 
generally under any situation for any preference orderings if the preference orderings can 
be  if  it  is  a  bipartite  structure  ok  so  the  first  result  the  stable  matching  algorithm 
necessarily terminates it will terminate at some point what is the proof for that it is very 
simple  In  fact,  it  terminates  in  less  than  equal  to  n  square  plus  1  days.

 That's the upper bound. Why? What is the logic? What is happening in this algorithm? 
Every day, at least one boy is being crossed out. Or in other words, one boy crosses out a 
girl  from  his  list.  When  every  day,  one  girl  is  crossed  out  from  some  boy's  list.

 So every day there is a cross out. Now there are n boys and n girls. And so every boy has  
a list which has a cardinality n of size n. So how many total cross outs are possible at  
max? Well at max n square cross outs are possible. Right. Which means on the n square 
plus 1th day the algorithm will necessarily terminate. So, this is the proof that the stable  
matching algorithm will necessarily terminate if we have a bunch of boys and girls and 
the preference orderings and if we apply the algorithm it will necessarily terminate at 
some point after a finite amount of time and the upper bound is n square plus 1 upper 
bound  of  time.

 What is the next one? Everybody gets married or paired. So, this is the definition of a 
perfect matching remember. In perfect matching everybody gets paired. In our example 
or we have made a simplifying assumption at the start of the lecture that the set of the  
cardinality  of  the  two  sets  which  are  being  matched  are  equal.

 So, let us prove this. Let us say boy B has not been is not married at the end. Okay any 
boy I am naming him B which means B has been rejected by every girl right which 
means every girl is already married but if every girl is married every boy is married 
because this cardinality of the two sets are equal so if every girl is married every girl is  
married to one boy at least which means every boy is married. which means B is also  
married. So, which leads to a contradiction that B is not married ok. So, if the cardinality  
of the two sets are equal this is not possible. And finally, the last one which is that it this 
algorithm  necessarily  produces  a  stable  match.

 We have seen it does right, we have seen it does in the example which we worked out.  
But what is the intuitive explanation that it always does? It's the following. It's a pretty  



intuitively easy proof to think about. Let us say it does not. Let us say we have applied 
stable  matching  and  we  actually  end  up  getting  a  rogue  couple.

 Let's say the rogue couple is called Johnny and Amber. Now if it is a rogue couple it 
means it is not a couple in the matching right now. Now how come Johnny and Amber 
are not couple right now in the match which we have got? Either case one is  either 
Amber rejected Johnny, right? If Amber rejected Johnny it means Amber must have had 
a boy more preferred than Johnny standing in front of her balcony, only then Amber 
would  have  rejected  Johnny.  And  the  final  choice  which  Amber  got  was  definitely 
somebody who was preferred to Johnny, which means Johnny and Amber cannot be a 
rogue couple, so it's a contradiction. What is case 2? Case 2 is Johnny never went and 
serenaded Amber, that is Johnny never went and stood in front of Amber's balcony. What  
does this mean? Now when is a boy going to a balcony of a girl? When is a boy not going 
in front of balcony of a girl? When he is not being rejected by a girl whom he prefers 
more  than  the  girl  under  whose  balcony  he  has  not  been  to.

 So which means if Johnny has not been under the balcony of Amber it simply means that 
Johnny has not been rejected by some girl whom he prefers more than Amber. If he has  
not been rejected by a girl whom he prefers more than Amber which means Johnny's 
current partner whom he has been matched with by the algorithm he prefers that person 
more than Amber which means Johnny does not prefer Amber over his current partner 
which means Johnny and Amber again does not form a rogue couple, right. So we see 
again we prove it by contradiction that formation of a rogue couple or occurrence of a 
rogue couple is impossible once we apply stable matching algorithm, okay. Great, so we 
have learnt the stable matching algorithm in this lecture. So we have learnt two different 
kinds  of  things,  we  have  had  two  different  exposures  in  the  first  two  lectures.

 In the first lecture we talked about network data and we tried to interpret two different 
situations, one in history, one in finance. In this lecture we have looked at something else, 
we have looked at stable matching algorithm. In the next two or three lectures I will deal 
with  something  completely  different.  I  will  talk  about  modeling  of  uncertainty.  In 
artificial intelligence, training an agent to behave optimally in uncertain situations is a 
key  thing.

 So is true in finance. So in the next two lectures, I will delve a little more in finance and  
talk about the idea of hedging and risk management. See you in the next lecture.


