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 Hello everyone, welcome to this course on Artificial Intelligence for Economics. I am 
Adway Mitra, an Assistant Professor in Indian Institute of Technology, Kharagpur and 
today we are going to start  our lecture 14,  the topic of which is  going to be Neural  
Networks. So, you remember that in the past few lectures we have been dealing with the 
general idea of how to learn from data that is if we have observations from the past, how 
can we extract important information from it or important knowledge from it based on 
which we can make some kind of prediction about the future. So, we have we started off 
with unsupervised learning which are clustering and we studied some algorithms for it. 
After that we came to supervised learning we using in which we have learnt decision 
trees as well as linear classifiers. So, linear classifiers if you remember like we are trying  
to fit a linear function to the like which I mean we are trying to find a linear function 
which will map the feature space to the label space and we will do the classification.

 So,  that  every feature  vector  can be  labeled as  either  +1 or  −1.  So,  that  is  binary 
classification and if we can do binary classification we can do multiclass classification as  
well. However, the assumption which we have made here is that this mapping from the 
feature space to the label space is linear. That is this as under this assumption we can 
work well only if the data is linearly separable, but in general that is not the case and we 
may need non-linear functions from the label space to the from the feature space to the 
label  space.

 Now, this  kind of  non-linear  functions can be represented by the important  concept 
called neural networks and that is what we are going to learn today. So, today we are 
going to start with non-linear classifications. We will discuss what is the general structure 
of a neural network and what are its components. We will see how neural network can 
work as a function approximator and then we will see how the parameters of a neural  
network can be estimated by the famous algorithm called back propagation. So, let us 
start  with  linear  classifier  once  again.



 So, you remember that linear classifier was defined in this way y=sign (w⋅ x ). So, what 
is x? x is the feature vector and what is y? y is the predicted label which is either +1 or 
−1 in case of binary classification. Now, what is w? w is the parameter of the model  
which basically means the coefficients of the of these features. It also indicates the or the 
w also indicates the line the linear structure which we using which we aim to differentiate 
between the different classes of data. That is w; w represents a linear structure such as a 
line  in  2D  or  a  plane  in  3D  or  a  hyperplane  in  higher  dimensions.

 such that the all the examples whose label is  +1 should lie on one side of the linear 
structure and the other labels with whose or other examples whose label is −1 they lie on 
the other side. Now, this simple linear classifier we can represent it by drawing a graph. 
So, like we can write it like this that all the features x1 , x2 ,…, xd let or let us say there are 
4 features initially. So, like we consider like we represent all of them as a nodes and then 
like we these are the input nodes and then we have the output node. Now, what happens 
in the output node? The output node will you will is since the output depends on all the 
all of the inputs that is all the input features, we connect the output node to all the input  
nodes  by  using  these  kinds  of  edges.

 And we write these as directional edges that is as you can see we have put an arrow 
indicating the direction of the edge, because the information will flow from the input to 
the output that is given the input then only we can predict the output. Now, each of these 
edges they will be weighted edges that is we with each edge we will associate a weight 
and that is going to be these coefficients and additionally we have the bias term. So, for 
that we will have this extra node it is basically a dummy node whose feature value is 1 
and it  also has its edge whose weight is  w0.  So, that is like the bias. And now what 
happens  at  the  output  node  is  that  it  receives  all  of  these  inputs  including the  bias.

 Now it carries out the multiplication followed by addition. What multiplication? Each of 
the inputs is going to be the multiplied by the weight of the edge along with it which it  
came that is x1 will be multiplied by w1, x2 will be multiplied by w2, x4 will be multiplied 

by w4 and so on and so forth. and all of these products will then be added up by a like this 
sigma function and after that we will apply the sin function on this and that will be our 
output that is that is the value which will be computed at the output node and that is what  
we will get. So, this is like clearly the what the output is the same as like what we have 
the I  mean the formula for  the linear  classifier,  we have just  represented this  whole 
operation with the help of nodes and edges. Now, so each input dimension is like one 
input  node  or  by  input  dimension  I  mean  feature  or  attribute  and  all  of  them  are 
connected to the attributes I mean sorry to all of them are connected to the output node 
and  then  each  connection  edge  from  the  input  to  the  output  it  carry  the  weight.



 So, this is like the basic the very basic or fundamental structure of a neural network. And 
so, as you can see it  is right now it is just an interesting representation of the linear  
classifier. Now, the question is can the using the structure if we expand the structure a 
little bit we can do things or we can represent functions which are more complex than just 
the linear classifier. Say like consider the situation of this multilinear classifier. So, what 
is  multilinear  classifier?  It  is  a  like  it  is  a  like  we can  say  a  combination  of  linear  
classifiers  which  must  be  taken  together  to  make  the  prediction.

 So, here if you look at this data set. So, you will see that there are red points on this side  
as well as on this side and in between there are some blue points which are like we label  
as −1 the red points are labeled as +1. So, now I want to separate the red points from the 
blue points.  Now like you can understand that there cannot exist  any linear structure 
which achieves this that is the data is not linearly separable. However, instead of one 
linear structure if we can use two linear structures say a line like this C1 another line like 

this  C2 then  we  can  however  like  use  these  two  classify.

 That is if C1 predicts +1 or if C2 predicts +1 then we can say that the final output is +1. 

So, C1 predicts +1 for the points which are on this side and C2 will predict +1 for points 
which are on this side. And if like if both of them are predicting −1 in that case the like 
the point is −1. So, like here the classification takes place through some like it requires 
some logical operations namely the logical AND or the logical OR. So, this again can be 
represented  with  the  help  of  a  neural  network  like  this.

 The only thing is that in this case we need some intermediate operations. So, like we 
have a classifier which is which corresponds to C1, a linear classifier corresponding to C1, 

another classifier which corresponds to C2. So, here we what we are doing is that first we 

are calculating the result of with respect to each of these classifiers separately  C1, the 

result with respect to C1 whether the output is +1 or −1 and also the result with respect to 
C2 whether the output is +1 or −1. And then once we have obtained  Then we can apply 

the AND OR function to get the final output whether it is the final output is going to be 
+1 or −1 right. So, like now you can understand that to do this calculation we need some 
intermediate step from the input we do not directly go to the output as we are doing in 
this  time,  but  instead  we  have  some  intermediate  steps.

 We first from the input we first calculate what is the result of C1 and we also separately 

calculate what is the result of C2. Then these two intermediate steps intermediate results 
we combine to get the final output. So, this is how we expand the idea of this graphical 
representation or the basic neural network to like represent this multilinear classifier. So, 
now these intermediate steps we can call these as the hidden nodes of the neural network.  
So, why hidden because like these are not things which are either the input or the output 



these are things which these are calculations which we carry out in like as intermediate 
steps.

 So, that is what is called as the hidden step. Now, suppose from the multilinear classifier  
we want to go to a non-linear classifier that is suppose the data is like this that is they can 
there is exist no linear structure which separates the data from the different classes, but  
there can exist non-linear classifier which separates the data. Like for example, in this 
situation like where the data is organized in the like form of concentric circles. We may 
not be able to find any kind of linear structure which separates the two classes of data, but 
we may find as some circle in between these two circles such that all the  points are with 
inside that circle and all the green points are outside that circle. So, we can like write this 
as  the  classifier.

 So, like we can we know that this is the equation of a circle. So, for the point the center  
of the circle is x naught somewhere here and the radius of the circle is or the squared 
radius of the circle is r square. So, now we know that if there is any point which is inside 
the circle that is whose distance from the center of the circle is less than the radius, then  
this thing will then this expression will be less than r or this whole expression will be 
negative. So, like if we apply the sine function on it we will get −1, but if there are for 
those points which are outside the circles then we know that this term will be more than r.  
So, if we subtract it from r we will get something some positive quantity to which we 
apply  the  sign  we  will  get  +1.

 So,  this  will  be  a  successful  circular  classifier.  However,  we  note  that  the  circular 
classifier is non-linear. In fact, it is quadratic because it has this x transpose x terms. 
Now, so obviously, the linear classifier will not work in this case we need a non-linear  
classifier. So, how do we achieve or how are we able to implement this kind of a non-
linear classifier? Now, when we have a neural network like the basic neural network as 
we  have  seen  already.

 So, it like we saw that it generally implements the this the linear function itself that is it 
calculates the product of the all the input at the input nodes I mean the feature vectors 
along with their weights and sums them up. So, that is a linear operation and on top of it, 
it applies the sine function. Now, instead of that if we could somehow apply any non-
linear function f on it in that case we would get an output y which is non-linear in x1 x2 
etcetera. Now, what that non-linear function can be  that is a different question, but like 
we can like the general I think is that we can impose some or we can incorporate some 
non-linearity in the output of the neural network by like adding us by replacing the sign 
function which we got earlier by like suitable non-linear function called f. So, now the 
question is why are we thinking of all these things I mean what is the speciality of this  



kind  of  a  structure.

 So, this particular structure this is an imitation of what is the like biological neurons  
which are present in our inside our human body. So, like you would have studied in 
biology class in school sometime. like a like what a biological neuron looks like it has 
things like the exons the dendrites and so so on. So, it receives the inputs from the using 
these dendrites it carries out some some processing of those input signals I mean that the 
which are the neural signals. And, then it transmits it to for for further processing to other  
parts of the body using the exon terminals which are like basically our the output nodes.

 So, similarly so, the structure of this basic neural network which we which we make also 
call as a  So, this is also some close imitation of this it receives the input and then the  
inputs is processed and then an output is sent out. So, this neural this very fundamental 
structure  of  the  neural  network  it  is  used  to  carry  out  some very  specific  pieces  of  
operations. And the like so, it the like the aim of this neural network is to calculate a very 
complicated  mathematical  function  which  can  be  highly  non-linear.  Now,  such  a 
complicated mathematical function we cannot compute directly in one step, but we can 
distribute it into many small small steps. And, it can be done in a in a hierarchical way 
where at the first step we may carry out some of the initial preprocessing using various 
parts  of  the  input.

 Now, based on these preprocessings we get some intermediate results which are stored in 
the first hidden layer. Then the results of the first hidden layer can be further grouped 
together and further processed to get the outputs of the second hidden layer. Now from 
that we can go to the third hidden layer and so on until the final results are ready. The 
final output that may be either a single real number or it can be like a vector also or it can  
be something even more complex like matrix. in certain situations we are right now we 
may  not  need  that  situation,  but  we  will  discuss  about  that  a  little  later.

 So, this is the general structure of the neural network. So, this is the input layer the from 
the input layer we like the we pass the information to the first  hidden layer.  And in  
between this multiplication by the edge weights takes place. So, like the it is we can  
consider that all the input nodes which basically stands for the different features vector I  
mean the features in the vector they are connected to all the nodes in this hidden layers 
using weights which are collected together in this matrix called w1. Then some of these 
weights of course, could be high some of them could be low some of them could even be 
0  which  means  that  effectively  those  two  nodes  are  not  connected.

 So, like here like we can assume that the first stage of computations take place in and  
their results are stored in the first layer of hidden nodes. Next, these are again connected 



to the second layer of hidden nodes. Again there are these edges connecting all the nodes 
in this layer to all the nodes in this layer using edges whose weights are stored in this 
matrix called w2. So, we can in general we can consider that there are  h1 nodes in this 

hidden layer and h2 nodes in the second hidden layer. So, there like if we are considering 

that all nodes are this are layer are connected to all nodes of this layer then total h1×h2 
edges  will  be  there.

 So, they are edge weights will be stored in this matrix called w2 which will be of size 
h1×h2. Similarly, so like here the results of the first layer of intermediate calculations like 

are further grouped together and processed and the results are the second layer of or the  
second intermediate results which are stored in the second hidden layer. and and so on 
and so forth and till  and this process goes on till  we reach the output layer.  So,  the 
calculations can take place like so, like the results of the first hidden layer we can write it 

in this notation h1=f 1 (w1⋅ x+b1), b1 means the bias which we can also denote by w0. So, 

w1 is  the  edge  weights  x1 is  the  or  x  is  the  input.

 So, basically a dot product takes place the bias is added and some non-linear activation 
function  f 1 is is applied on it. So, the result is the this  d1 dimensional vector which is 

stored in this first hidden  after that again in like this result h1 like we apply the w to the 

edge wedge w2 on it. So, another dot product on a matrix operation takes place. So, h1 is a 

vector and w2 is a matrix. So, this like the matrix multiplication takes place and we get a 
new  vector.

 we add the new bias term and apply a new application activation function f 2 to it to get 

the new vector h2 whose size is d2 and this whole process takes on goes on and on for l 
hidden layers and finally, we get the output which we can call as y. So, like this is this  
operation in which the calculations are done from I mean input is provided and then the  
calculations are done in layers from the right side to the left side. So, from the left side to  
the right side until we reach the output this is known as the feed forward operation of a  
neural network. So, as you can see initially the these red these nodes turn red indicating  
that some values are supplied to it in the input then after that the first layer of calculations 
is done and we get the values of the first hidden layer that is the first set of intermediate  
results. After that we calculate the second set of intermediate results which are the nodes 
of the hidden layer h2 then the third then the fourth and finally, the last or the lth hidden 
layer  and  from  that  we  finally,  calculate  the  output.

 The like at the output layer we can again have some function activation function g the 
calculation remains the same that is you have the edge weights v and the last layer of 
intermediate results is called as hl. So, we do this another round of matrix multiplications 



we add another biased term we apply the this non-linear function g and we get the final  
outputs.  So,  our  so  like  from  input  to  output  we  are  repeatedly  doing  this  matrix 
multiplication operation and we are applying a non-linear activation function to it. So, 
that ultimate the final result y is a very complex representation of the input x that is it has  
undergone  a  large  number  of  transformations  which  are  which  can  be  non-linear 
depending on what these  functions are and hopefully and and if they are suitably chosen 
these activation functions if they are suitably chosen this y can be used to represent any 
arbitrary non-linear function of the input vector x. So, now so this is the general structure 
of  neural  network  and  its  functionalities.

 So, now when we are building a neural network there are many  components in it. First 
of all how many hidden layers will be there like this L how many like what will be the 
value of L or then how what will be these numbers d1 , d2 etcetera. So, means how many 

units will be there in each of the hidden layers. And third is what about these functions f 1 
f 2 up to f l or g. So, what will be the types of activation functions in the hidden layers.

 So, these are decisions which the network designer has to take. So, there is no gold I 
mean golden rule for deciding these things. So, typically the neural network I mean the 
machine learning scientist who is developing the neural network they have to choose 
suitable values for these all of these things. However, there is another set of parameters 
that  is  these  w1 ,w2 , etcetera.

 So,  like the I  mean the weights  themselves.  Now, these the numbers  like  d ,d1 , d2 , 
etcetera  those are  chosen by the machine learning engineer  who develops the neural 
networks, but the edge weights themselves the numerical values of the edge weights like 
w1 ,w2 , etcetera they are not chosen by the neural by the engineer instead they have to be 

calculated. So, they are like calculating these parameters is essentially the process of 
training the neural network just like we estimate the coefficients w of a linear classifier 
through algorithms like perceptron or support vector machine which we discussed in the 
last lecture with where we are essentially trying to minimize a loss function. Here also 
theidea  is  the  same we have  to  choose  these  parameters  in  such a  way we have  to 
estimating made them from using data by considering a loss function. So, the what is the 
loss function the loss function it basically compares the neural networks output which is 
f (x ).

 with the true value of y. So, what is y? y is the true output corresponding to the input x,  
what is f? f is the function which is represented by the neural network. So, the neural so,  
given any input x the neural network it calculates a function I mean it it calculates an 
output which is known which we can call as f (x ). So, now that f (x ) is to be compared 
with the true output y which we should expect to get  from the input x and then we 



compare them using this loss function. So, what function this L will be depends on the 
exact problem which we are trying to solve again choice of the loss function is again the 
task of the machine learning engineer, but we have to choose the values of the weight  
parameters to minimize this loss function. So, now how is that done? So, like we use this 
like we cannot like solve this problem analytically that is we cannot just calculate the 
derivative of the loss function with respect to w and then equate it to 0 it will the it will  
not  be  tractable.

 So, we have to use approximate or numerical methods such as gradient descent. So, we 
have to calculate the gradient of this loss function with respect to each and every weight 
in  the or  each and every parameter  in  the model.  So,  like here  a  simple example is  
worked out if the error like if the loss function is the simple squared error as it happens in 
case of linear regression and if there is only one set of these weights like this. Then we 
can simply calculate the gradients of each I mean the like each weight age weight by 
calculating a simple derivative of the loss function with respect to that and then we can 
update the that weights using the usual form of gradient descent. That is we have some 
initial value of the weight we calculate the gradient using the at that particular value I 
mean we we have the formula for the gradient we just plug in the current value of  of w j 
to it and then we multiply it with this learning rate alpha and we get an updated value of 
this  parameter  w j and  this  we  process  we  keep  on  until  we  reach  some  sort  of 
convergence  for  all  of  the  edge  weights.

 So, that gives us the a local minima of the edge weights with respect to the this loss 
function. Now, if when we so this is of course, a straight forward calculation assuming a 
very simple loss function and a very simple structure of neural network where there is  
just one layer of I mean one hidden layer, but in if we if it is a deep neural network with  
many hidden layers like this with l hidden layers and so are in modern days a typical  
neural network has hundreds of hidden layers. So, so and each of in each hidden layer 
there are many parameters. So, to like  a neural current neural network can easily have 
millions of parameters. So, each of them have to be updated using this process of gradient 
descends  descent.

 So,  like  the  in  that  case  we have to  apply what  is  known as  the  back propagation 
algorithm in which the weights are updated turn wise from the output layer to the input 
layer. So, like first the this back propagation is nothing, but calculating or applying the 
chain rule of differentiation. So, the loss function is of course, calculated at the output 
layer. So, the first step is to update it should be easiest to update the parameters of this  
output layer which which are the v. So, we can easily calculate the derivative of the loss  
function with respect to v because the output neural networks output is like it can be 
easily  represented  as  a  function  of  this  v.



 So,  we can carry out  the derivative and like update this  v.  Now, we after  we have 
updated  v  the  next  task  will  be  to  update  w l.  So,  for  that  we  have  to  calculate  the 
derivative of the loss function l with respect to the weights in this layer that is with for  
each of  the parameters  in the like  w l we have to calculate the derivative of  the loss 
function. So, this will of course, be difficult because the loss function is not directly a  
function of w l, it is the loss function is of function of w l via this intermediate step v, but 
fortunately we have already calculated the derivatives of the loss function with respect to 
v. So, we just need the loss function I mean the derivative of v with respect to w l using 
the  chain  rule  of  differentiation.  So,  like  we  are  effectively  doing  something  like 
∂ L
∂ v
×
∂ v
∂wL

 something  like  that.

 So, we were using the chain rule of differentiation and reusing the values that have 
already been calculated. So, using the derivatives of L with respect to these V we can 
calculate the derivative of L with respect to  wL and then those again will be reused to 

calculate the derivative of wL−1 then wL−2 all the way back to the like the first few layers 
w1. So, this is the famous back propagation algorithm. So, which is used for training the 

neural network that is estimating the parameters of the neural network. And needless to 
say deeper the neural network is more of the training data we will need to estimate all 
these  parameters.

 So, in conclusion a linear classifier can be expressed as a neural network with nodes and 
edges each input feature is expressed as an input and a node and output the output is 
expressed as an output node. The output can be either a single number or it can be a 
vector also it can be even be more complex like a matrix or a tensor. Addition of hidden 
layers allows us to express more complex decision boundaries or more complex functions 
for  the  neural  network.  Non-linear  activation  functions  they  enable  us  to  express 
arbitrarily complex functions. And in the feed forward mode computations are carried out 
in  steps  from  the  input  to  the  output.

 So, at each hidden layer we have basically some intermediate calculation results which 
are then passed on to the next layer where some more intermediate calculations are done 
and so on and so forth until we get the final output. and the like the machine learn the 
neural network structure has various design choices like number of hidden layers number 
of nodes in each hidden layers type of activation function and things like that which are  
chosen by the machine learning engineer but the edge weights that is the parameters of 
the numerical net of the of this neural network they have to be calculated numerically 
with  the  help  of  algorithms  such  as  gradient  descent  with  the  of  minimizing  some 
particular loss function. The loss function again has to be chosen by the machine learning 



engineer, but those derivatives of the loss function with respect to each of the parameter 
in the neural network they can be calculated using the back propagation algorithm. So, 
like so this is the basic story of neural network. So, like in the domain of economics  
neural  networks  like  they  find  a  lot  of  applications.

 So, we have already seen a number of classification tasks in the domain of economics. 
So, some like we have when we discussed the linear classifiers. So, in many of those  
tasks the linear the choice of linearity as a function is often not enough and we need a  
non-linear function. So, in such situations it is good idea to use the neural networks to get  
more  accurate  results  in  the  same  task.

 So, with that we come to the end of this lecture. In the next lecture which will be lecture 
number 15, we will discuss some more applications of modern neural networks and how 
they can be used for the task of time series forecasting which is particularly important in 
economics. So, till then all of you please take care stay well and we will see you soon  
bye.


