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 Hello everyone. Welcome to this course on Artificial Intelligence for Economics. I am 
Adway Mitra, an Assistant Professor in Indian Institute of Technology, Kharagpur. And 
today we are on lecture 13 of this course. The topic of today's lecture is Uncertainty 
Modeling. So, in the last few lectures, we have been discussing the general idea how we 
can  learn  from  data  so  that  we  can  make  predictions  on  new  data.

 So, we have already discussed the concept of unsupervised and supervised learning. We 
have  also  learned  some  of  the  like  fundamental  models  and  algorithms  related  to 
supervised learning such as decision trees, linear classifiers, linear regression and so on. 
Now, whenever we are making a prediction, we must understand that the prediction is 
never expected to be perfectly accurate.  There is always going to be some degree of 
uncertainty  whenever  we  are  making  a  prediction.

 Now,  where  does  this  uncertainty  come  from?  There  are  two  kinds  of  uncertainty 
primarily, they are called the aleatoric and epistemic uncertainty. The first one kind of 
uncertainty is due to our imprecise observations. So, you would remember one thing that  
when we were  making any kind of prediction we first need our x that is the feature 
vectors and on the basis of which we try to predict y which is our level. Now, when we  
are the feature vectors where do these feature vectors come from typically they may come 
from some kind of observations. So, when we are making those observations there may 
be  some  amount  of  noise  in  the  measurements.

 So, that already or they or it might be that there are some observations which are missing 
that that missing this missing observations may either be because our instruments are 
faulty they were not able to observe certain things or it may be that we ourselves did not 
know  that  certain  things  needed  to  be  observed.  that  is  when  we  are  making  the 
prediction of any variable y. Let us say I want to predict what is going to be the GDP 
growth rate of India in the coming quarter. So, like they of course, this depends on many 
things on like on a variety of economic and extra economic factors. Now, it is possible 



that there are some crucial factors which will impact the GDP growth rate, but which I 
am  not  aware  of  or  which  I  am  for  some  reason  not  able  to  measure.

 So, the feature vectors will be insufficient to make the prediction. So, that bring so, the 
extra  factors  which  were  not  observed  for  whatever  reasons  they  adds  a  degree  of 
uncertainty in our predictions. Like if we had been able to observe them maybe we could 
have  made  an  accurate  prediction,  but  since  we  are  not  able  to  observe  them  our 
predictions  become  a  bit  uncertain.  The  other  type  of  uncertainty  comes  from  the 
limitations of the model itself. So, like when we are using the linear regression or the 
linear classifier, you would remember that our task was to like learn a function f which 
maps  from  the  feature  space  to  x  to  the  label  space  y.

 But, now in case of linear regression or linear classification we have made an assumption 
that that function f is a linear function, but maybe in truth it is not maybe it is a non-linear  
function or maybe it is some kind of a kind of function which like we cannot express 
through mathematical parameterization that is we cannot write a mathematical expression 
for that function. So, in that case uncertainty of our predictions will be coming because of 
the insufficientness or insufficiency or like incapability of the function which we are 
using even though the observations of the feature vectors themselves may be perfect. So, 
these are the two primary sources of uncertainty which come in when we are trying to 
make a prediction. So, this is why when we are making a prediction it is usually not  
enough to just give a number that this is what we are going to this is the value which we 
are going to observe. In general or in most situations that is not going to be the accurate 
answer.

 So, when we are like making a prediction along like if we are at all to give a single 
number that will probably be something like the. most likely scenario and along with it  
we also have to specify some other scenarios which are less likely, but still somewhat 
likely. So, this suggests that we use the concepts of probability theory somehow because 
probability theory it  allows us to quantify uncertainty.  So,  in this  lecture we will  be 
focusing on  the relevant concepts of probability theory and how they can be used for 
supervised learning. So, today we will revise the concepts of random variables as well as  
the  well  known  probability  distributions.

 We will talk about expectations and how they can be used for risk analysis in economics 
as and we will also discuss the Bayes theorem and Bayesian networks which are also 
very important in many economic applications. So, like first of all, so many economic 
decisions which we like may need to make are based on estimates and projections of the 
future. Like for example, should I invest in a particular company or not, will it do well or  
not or if yes, if we can predict that it is going to do well then also we have to somehow 
decide  how  much  I  should  invest.  or  how  much  budget  should  be  allocated  for  a 



particular purpose and how can may the expenditures change over time. So, all of these 
kinds of decisions we frequently have to make in the domain of economics and all of 
them involve  some kind  of  prediction  and  the  predictions  as  I  already  said  may be 
possible  to  make  using  concepts  of  supervised  learning.

 But there is always uncertainty involved with these predictions and our aim here is to 
quantify such uncertainty with the help of probability theory. So, let us come to the the 
necessary concepts of probability theory. So, we all know that a probability theory is 
based on the concept of random experiment which is a process that can have  several 
possible outcomes, but we cannot say that for one particular run of the experiment which 
outcome will  going to  happen.  For  example,  in  case  of  coin  toss  we know that  the 
possible outcomes are head and tail, but when a coin is tossed once we cannot say exactly 
what will be the outcome, will it be the head or will it be the tail. Now, it is possible that  
if all the necessary information was presented to us means when we are tossing the coin 
exactly how we are tossing it, exactly which finger we are like on which we are applying 
the force, how much force we are employing to toss through that coin up in the air, then 
what is what are the properties of the wind around that place and so on and so forth.

 So, maybe if all of these information we could have then maybe it could be possible to  
work out some equations of physics and come up with the definite answer that yes it is 
going to fall on the head or it is going to fall on the tail, but since we do not have those  
things we just assume that it is a noisy process or it is a random experiment. Same case  
goes with the dice throw also. So, the set of all possible outcomes like head or tail in case 
of a coin or 1, 2, 3, 4, 5, 6 in case of a dice, these are what is known as the sample space 
of the random experiment and event is like defined as some subsets of the sample space.  
For example,  in case of  the dice throw we can say that  like we are getting an even 
outcome from the dice. So, obviously that consists of 3 outcomes 2, 4 and 6 these are all  
these  outcomes  are  all  part  of  that  event  call  even  outcomes  for  the  dice  throw.

 Now, like based on this we define a probability measure. A probability measure is a 
mapping as a function from the event space to the interval  [0 ,1].  That is we have a 
random experiment,  we have its  sample space that  is  all  possible outcomes.  We can 
define all possible subsets of it. that is the power set of the sample space the each of them 
is  an  event  and  to  each  such  event  we  can  associate  a  measure  between  [0 ,1].

 However, that has to satisfy certain criteria for example, P(Ω) the P of the entire sample 

space should be equal to 1. Furthermore, if A is any event we can define A complement 
as Ω∖ A that is Ω is the sample space from that you remove all the outcomes associated 
with  that  event  A and whatever  are  remaining is  called  A complement.  So,  we this  
relation must be satisfied P(A )=1−P( Ā ). Now, what is a random variable? A random 



variable is a mapping from this event space which we already defined to the space of real  
numbers.  Now, we say that  like X is  a  random variable when we are saying X is  a 
random variable although it is called a variable, but actually it is a function as we already  
said  it  is  a  function  from  the  event  space  to  real  numbers.

 So, when I say what is P(X≤a). So, this basically means it is the total probability or the 

sum of the probability measures of all the events for which the random variable X maps it 
to values less than a. or less than or equal to a right a is some number which we have 
some real number which we have specified then the probability that the random variable 
takes less than equal to a if the definition of this is that the it is defined as the sum of the 
probability measures P of all the events for which this condition is satisfied. Now, the 
range of the random variable X or the set of unique values which the random variable 
takes right. Remember that X is a function from the event space to the space of real  
number.

 So, it has a range. It can take different values which are all real numbers, but what are 
the unique values that it takes. That set of unique values taken by the random variable or 
mapped to by the random variable is called as the support of that random variable. So, the 
random variables can be either discrete in which case their support set is discrete or it can  
be  continuous  for  in  which case  its  support  set  is  continuous.  So,  like  here  are  two 
examples.  So,  this  is  what  a  typical  DRV  or  discrete  random  variable  looks  like.

 So,  you can see that  it  takes only three unique values 1,  3 and 7 each of which is 
associated with a probability measure. And as you can see these all add up to 1. And in 
this case like what we are seeing is it is a continuous random variable that is it can take  
all possible real numbers. or maybe all real numbers within a particular range. Now, if 
you  integrate  the  area  under  this  curve  in  this  case  also  you  will  get  1.

 So, why is that? So, now first of all  like any random variable it  is characterized by 
certain functions. The most fundamental of them is called as the cumulative decision 
function which is represented by  f (x). So, like so in this case x stands for a particular 

real number. That is the we are trying to evaluate this cumulative distribution function or 
CDFF at this particular value of a small x and the it is defined as this function is defined  
as  P(X≤x).  So, we have already defined in fact, sorry for a typo this will be  X≤x.

 So,  we  have  already  defined  what  is  meant  by  this  thing  probability  of  X≤a.  So, 
basically the sum of all the events in which the like they or rather I should say the sum of 
all  the  mutually  exclusive  events  for  which  this  condition  is  satisfied.  each  discrete 
random variable is characterized by one more thing which is a probability mass function. 
This CDF is it like it we can define it for both continuous and discrete random variables,  



but  for  discrete  random  variables  we  have  one  more  thing  which  is  called  as  the 
probability  mass  function.  So,  it  is  a  function  f (x) which  is  equal  to  P(X=x).

 So, like as I already said since it is a discrete random variable X its support is discrete. It 
takes only a finite or I should not say finite it takes only discrete values like in this case it  
took these three values 1, 3 and 7. Unlike this case in which X is taking like all possible 
values in this range which is of course, not discrete which is continuous. So, like so, we 
can like when we are saying P(X=x). So, like this is like we can again go back to the 

definition of events and we can like calculate the probability measure associated with 
each of those events for which which are mapped to this value of X by this random 
variable  and  we  can  add  them  up.

 So, like one important property which this cumulative this probability mass function it  
satisfies is that this f (x) is it is always non negative it can never be less than 0, it should 

lie it must lie between 0 and 1 and when we add up this function f (x) over all possible 

values of x that is over the support of X then it is always equal to 1. So, for different 
distributions these effect I mean it are they are characterized by a particular functional 
form of this probability mass function. And each of these probability these functions they 
are associated with certain parameters which are also like have certain characteristics. For 
example, the Bernoulli distribution, this is the most basic discrete random variable or 
discrete  distribution.

 It basically mimics the coin toss. Its support set is just 0 and 1 and its PMF is defined 
like  this  and  it  has  a  single  parameter  p.  Similarly,  we  have  other  discrete  random 
variables like binomial, Poisson, geometric, categorical, multinomial each of which have 
a PMF, but this is not a class on probability theory. So, I am not going to describe all of 
these PMFs in detail. On the other hand, when we come to the continuous  or continuous 
random variables. In that case the CDF still holds, but the like it is no the PMF or the 
probability  mass  function  does  not  work  in  that  case.

 Instead  what  we  have  is  probability  density  function.  So,  what  is  that?  So,  it  is 
characterized by  f (x) a function f measured at a real number x. So, it is equal to P of  

x−δ  less than equal to the random variable X is less than equal to x+δ . That means, it is 
the cumulative the total probability of all the events which are mapped to values between 
x−δ  and x+δ  by the random variable x. So, the like as I already mentioned the like the 
support set in this case is continuous like in case of uniform distribution the support set 
can  be  any  interval  on  the  real  axis  let  us  say  a  like  any  two  numbers  a  and  b.

 In case of beta distribution the support set is only the interval  [0 ,1].  In case of the 
Gaussian distribution also known as the normal distribution which we are all familiar 



with the support set is the entire real line. the in case of Γ distribution it is non negative 
reals  and  so  on  and  so  forth.  So,  like  just  like  every  discrete  random  variable  is  
characterized  by  a  probability  mass  function  every  continuous  random  variable  is 
characterized by its probability density functions which have a well known mathematical 
parametric  form and the  associated  with  it  are  certain  parameters  also  like  this.  For 
example, in case of the Gaussian distribution we all know the parameters are the μ and 
the  σ  which  are  known  as  the  mean  and  the  variance  parameters.

 Now, what do we do with these distributions? So, like they are like we can define. joint 
probability  distributions for  2  or  more events  that  can occur  simultaneously.  Say for 
example, when I say like let in case of a dice throw let x be the event that we get an even 
outcome and y be an event where we get an outcome which is less than 3. So, in this case 
both  can happen simultaneously  the  intersection of  these  2  events  is  the  outcome 2. 
because  that  is  both  even  and  it  is  less  than  3.

 So, like so let us say X and Y are the two random variables. So, then we can define what  
is known as the joint distribution of it. So, like we write it in this particular way. So, its  
joint distribution f (X ,Y ). So, this is can be either a PMF or the joint PMF or joint PDF 

depending on whether they  or continuous random variables or discrete random variables.

 If it is continuous random variable, so it just means the probability of the event that x  
capital X takes the value small x and the random variable capital Y it takes the value  
small y. So, that is the definition of this joint distribution or joint PMF at the point x 
comma y. Similarly, in case of continuous distribution we can define the joint PDF, so 
that is also defined in this way. that is basically the probability of the event that the 
random variable X takes values between  x−δ  and  x+δ  and the random variable Y it 
takes values between y−δ  and y+δ . Now, like we say that like these random variables X 
and  Y  we  call  them  independent  if  this  condition  is  satisfied.

 That is if they are joint distribution at any point x comma y can be factorized or not at 
any point, but at every point x and y it can be factorized by the product of their individual 
distribution. So, f x this is an individual PMF or PDF of the random variable X. This one 
is the individual PMF or PDF of the random variable y. If we multiply them together then 
we will get the joint PMF or PDF at that point provided these two random variables X 
and Y they are independent of each other. That is one does not influence the other in any 
particular  way.

 Now, however in general like they can influence each other like it might happen that 
random two random variables they have some bearing on each other. Say for example, 
like so based on this concept we have conditional probability that is the probability that 



one event will happen when we already know that the another event has happened. That 
is the probability that outcome of a dice throw is 2 when we already know that the result 
is even. So, accordingly we can define the conditional PDF or conditional PMF also in 
this way and it is defined as the joint PMF or PDF divided by the PMF or PDF of that 
random variable on which we are conditioning. So, in this case when I write y given x 
that means, x is the condition that is x is something we already know and y is something 
which  we  are  trying  to  predict.

 So, we write the so, this can be calculated as the joint distribution joint PMF or PDF of  
these two at this particular point divided by the individual PMF of or PDF of X at like at 
the corresponding point. Now, there is a law of total probability and the Bayes theorem 
which are defined in this way and we are which we are all familiar with. So, like the law 
of  total  probability  it  allows  us  to  reduce  the  joint  distribution  to  the  individual 
distribution by a process which is known as marginalization that is we either add over or 
integrate overall possible values of the other variable which we are trying to eliminate.  
And similarly in case of Bayes theorem we can like we are trying to we establish this 
kind of a relation between the conditional and the individual or marginal distributions. 
Now based on the concept of Bayes theorem we have something known as Bayesian 
networks  for  complex  systems  which  involve  many  uncertain,  but  interdependent 
variables.

 So, these variables they have some dependence relations between them like the just like 
the like we talked about the conditional probability. So, this means that they are the two 
random variables they are not independent of each other. If one happens then we know 
the about something or we have we may have at least partial information about the other 
event. If we know that like it is a sunny day today, then we have some knowledge about 
the let us say X is a variable that is which says it is the weather is sunny or not sunny and  
Y is another variable which is stands for the temperature. So, if we already know that 
today is a sunny day that is X equal to sunny, then we can expect that the temperature 
variable  Y  it  is  likely  to  be  on  the  higher  side.

 Even though we may not know exactly what value it will take, but we have some idea 
about it. For example, I may think that like a temperature of 30 degree Celsius today is a 
bit more likely than a temperature of say 5 degree Celsius. Now, like when let us say that  
we have a complex system with many random variables which are dependent on each 
other. So, we build this kind of a representation which is known as a Bayesian network. 
So, it is basically a directed graph where every vertex represents a random variable and 
we  have  these  kinds  of  edges  between  like  different  pairs  of  these  variables.

 So, what does the edge represent? So, conditional distribution is defined at each node 
over its parent nodes. So, these edges like as you can understand like whenever we have 



these directed edges it induces some kind of parent child relation between the different 
vertices. For example, we can about vertex e we can say that b and c are the are its 
parents. for vertex f we can say that it has one apparent e and similarly about vertex a we  
can say that it has no parent, but it has two children b and c and so on. So, now we can 
whenever  or  at  every  variable  we  can  define  its  joint  distribution.

 Sorry, we can define its conditional distribution conditioned on its parents. So, whenever 
I am writing the conditional distribution of B, I must condition on its sole parent A or 
whenever I am considering a distribution on E, I must consider or condition on both of its 
parents B and C. So, like you can take a look at the example which I have said here, here  
the assumption is that all of these variables they are binary variable. Now, for a like since 
it has no parent I am just defining its marginal distribution P of a probability of a equal to 
1 is  0.7 which automatically means that  probability a  equal  to 0 will  be 1 minus 0.

7 equal to 0.3 because there are only two possibilities whose probabilities must add up to 
1. Now, in case of b when I want to specify its distribution I must specify the condition.  
So, the condition in this case is a because it is parent. So, the it a can take two possible  
values  1  or  0.

 So, I must specify the distribution of b for both conditions. When a equal to 1 I am 
specifying what is the probability that b equal to 1 and when a equal to 0 then also I am 
specifying what is the probability that b equal to 1. So, note that in this case these two 
probability 0.9 and 0.2 they must they need not add up to 1. Because, I have not specified  
the full distribution thus to specify the full distribution I should have also I have written  
that probability b equal to 0 given a equal to 1 that is equal to 1 minus probability b equal  
to  1  given  that  a  equal  to  1  that  would  have  been  0.

1. Similarly, for the variable like say let E, you can see that it has two parents B and C 
and so I have considered four conditions. So, B equal to 1, C equal to 1 is one condition, 
B equal to 1, C equal to 0 is another condition, B equal to 0, C equal to 1 and finally, B 
equal to 0, C equal to 0. So, for all possible conditions on its parents I have specified  
what is the distribution on E. So, now the joint distribution of all of these variables can be 
factorized as the product of all these conditional distributions. So, like when we have a 
Bayesian network like this, it basically is trying to helping help us to define the joint  
distribution  of  these  like  all  these  random  variables,  but  in  a  efficient  way.

 That is I do not have to consider the entire joint distribution, I can break it up into small  
small factors, one factor per variable and each of these factors is a conditional probability 
distribution which is base like. based on one particular variable conditioned on its parent 
variables. So, when we have a Bayesian network like this what do we do with it? One 
thing which we can do is probabilistic inference that is let us say some of the we know 



the values of some of the variables for sure, then based on that we can try to predict what 
can be possible values of other variables. Like for example, let us say I know that c equal  
to 0 or d equal to 1 these are my observations. Let us say these two variables I am able to  
observe  based  on  which  I  am  trying  to  predict  possible  values  of  b.

 Now, the model by itself does not specify this distribution, it specifies the distribution of 
B in terms of its parent which is A, but not in terms of C or D, but we can if we can use  
the Bayes theorem in a smart way, then we can calculate this probability distribution. So, 
for this there are there are algorithms which we can run on these Bayesian network which 
like those algorithms are primarily based on the Bayes theorem which we have already 
discussed which helps  us  to  calculate  this.  And it  is  because of  this  reason that  this 
network is called as the Bayesian network. Now, one more thing give like let us say that 
we are given observations of the of a particular variable. Let us say like there is a variable 
x which we have observed n number of times which means that we have done n random 
experiments and the results of those experiments with respect to the variable x are x 1, x 
2  up  to  x  n.

 So, then like what do we say about x that is we can now consider x as a random variable, 
but what probability distribution will it follow. So, like we so, the idea is that we like we 
try to approximate this like x with one of the standard probability distributions which we 
are aware of for which we have a standard parametric form of the PMF or PDF. So, like 
we may never be able to choose a perfect distribution for x, but we can approximate it 
with some of the well known distributions because we know how to work with those 
distributions. So, like we need to consider first of all a known distribution family whose 
support set is consistent with the observations. So, if the observations are mostly binary 
then  I  may  choose  the  Bernoulli  distribution.

 If the like observations I see they are all being real numbers any real numbers which can 
be either positive or negative I can choose the normal or Gaussian distribution. If I see 
that it is only positive real numbers I may choose the gamma distribution and so on and 
so forth. However, the every distribution is characterized by a PMF or a PDF. So, we like 
using the observation which we have we can construct a histogram and the histogram it 
like from the law of large numbers it follows that like if we have enough observations 
then the histogram converges to the PMF or PDF of the of that of a particular probability  
distribution. So, we will observe the histogram of the from the observations which we 
have  got  and  see  the  it  resembles  most  strongly  the  PMF or  PDF of  which  known 
distribution and accordingly we approximate these observation or this random variable by 
that  particular  distribution.

 However, what is left is to calculate the parameters. That is even if I have decided that 
this x must follow the Gaussian distribution what will be the value of mu and sigma. So, I 



just write down this function  P(X ) as the joint density of joint mass function  all the 

individual observations because we have considered that the like the experiments which 
we have done are independent of each other. So, the outcomes of these experiments x1, x2 

etcetera they we can consider them as independent random variables. So, in case of that  
as we know the joint distribution is simply the product of the individual distributions.

 Now each of these like we since we have already chosen a parametric form. So, like this 
is a function of those corresponding parameters. So, I just try to maximize this function 
with respect to each of those parameters. So, if I can maybe I will try to differentiate with 
respect to the parameters and equal to 0 and so on. So, this is called as the maximum 
likelihood estimate of the parameters. So, why do we study these in economics? So, there 
are  many  applications  of  Bayesian  networks  in  economics  say  risk  assessment  in 
management  that  and  management  that  is  the  most  important  task  the  task  of  risk 
assessment.

 So, these Bayesian networks they can complex they can model complex dependencies 
between  economic variables and events which allowing allows for more accurate risk 
assessment that is like let us say that certain economic variables exceeding some some 
limit may be considered as a risky situation for us. So, what is the probability that such a 
thing will happen conditioned on other economic variables. So, that can be these kinds of 
things can be calculated easily using the Bayesian network. Similarly, in case of market 
analysis we may try to like represent the market dynamics by modeling the relations 
between different  market  variables  such as  supply demand prices  consumer behavior 
etcetera. Also in supply chain management we Bayesian networks can be used to model 
the  dependencies  between  the  different  stages  of  the  supply  chain.

 Now, one more important concept which I should mention here is the expectation of the 
random variable. So, it is basically a probability weighted average value of a random 
variable which is defined in this way like if it is the DRV that is we just sum every 
possible  value  every  possible  value  taken  by  the  random  variable  multiplied  by  its 
corresponding probability mass function. In case of the CRV we cannot of course, add up 
because it is the support set is like continuous. So, we instead we do the integration and 
we while every value is multiplied by its corresponding pdf. So, like we have standard 
value we can easily calculate the expected values of x assuming if we assume what kind 
of  parametric  distribution  x  follows.

 Like if it is this Bernoulli distribution then it can it turns out that its expected value is 
simply p. like in case of a coin toss. If it is it follows a Gaussian distribution then its  
expected value is simply the mean parameter. Also like these are some of the well known 
and famous properties of it is called as linearity of expectation and along with it there is  



also a concept of variance. So, like while E of x expected value of x it tells us what is the  
likely value of x the variance it tells how far it can deviate from that likely or the mean 
value.

 So, for example, in like again the variance of X can also be calculated easily if we know 
the parametric form of its decisions. Now, this is like the we in economics we often need 
the concept of expectation based risk analysis in many cases that is to understand the 
what is to be like the average case scenario and then accordingly we may take some 
decisions. Say for example, consider this case where I have 100 rupees to bet on a cricket  
match  Now, I may bet x rupees on a particular team if they win then I will get twice the  
what I invested, but if I if that team loses then I will lose 20 times what I have invested.  
Now, suppose that the I somehow know what is the probability that this team A is going 
to win. So, in that case I can try that what is my expected gain if I bet any amount that is  
in  the  average  case  scenario  how  much  money  do  I  can  I  expect  to  gain  back.

 On other hands I can also ask these kind of more specific questions that is if I want to be 
left with at least 10 rupees that is I am willing to risk some losses, but the losses should 
not be too much. In that case I should be left with at least 10 rupees even if I lose. So, in 
that case what is the maximum amount I would like to bet or on the other hand I may be  
like optimistic also that I want to I have a target of winning 150 rupees. So, I may want to 
bet a high amount even if there is a loss there is a risk of a loss. So, how much should I  
bet? So, these questions like these are can be answered with the help of concepts of  
expectation.

 Now, similarly the concepts of variance can also come in I want to predict the stock 
price y of a company based on some economic predictors. Now, suppose those economic 
predictors have some value x and let us say that I have also fit some kind of a model 
which predicts the possible value of Y given x. So, what is the expect first of the first 
question which I may ask is what is the expected value of the stock price that is the 
expectation or it  we can also get  a  point  estimate using the like a  standard machine  
learning. At the same time I may also ask what is the risk that it may the stock price may 
follow  below  a  particular  threshold  y.

 So, this is something like a risky event. So, in conclusion uncertainty quantification is 
very important in economic decision making. We represent various factors as random 
variables and consider them to follow a known family of distributions. The family and 
the parameter values can be chosen based on the observations of each variable  The 
relations between different variables can be represented through conditional distributions. 
The  expectation  captures  the  average  case  scenario  while  the  variance  suggests  how 
much  deviation  from  the  expectation  expected  value  is  possible.



 So, with this we come to the end of this particular lecture. In the coming lectures we will 
discuss  about  other  aspects  of  supervised  learning  in  particular  how we can  build  a 
stronger prediction models using neural networks. So, till then  Please take care and stay 
well. See you again. Bye.


