
Selected Topics in Algorithm
Prof. Palash Dey

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 60
Linear Programming Based Kernels

Welcome, in the last class we have defined kernelization algorithms and we have seen easy

kernel a quadratic kernel for vertex cover problem. And we have also seen that kernelization

algorithm is equivalent to FPT algorithms that means we have an FPT algorithms if and only if

there exists a current location algorithm if there exists at least one algorithm for the problem. So,

today we will see more non-trivial kernelization algorithm for vertex covered which is based on

linear programming.
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So, kernelization algorithm for vertex cover based on linear programming. So, let us recall what

is the linear program for vertex cover. So, linear program relaxation for vertex covered. So, let us

consider the unweighted vertex cover. So, for every vertex we have a variable V and we want to

minimize ∑v∈V
xv and what are the constraints subject to for each edge e={u , v } we have this h

must be covered that means xu+xv≥1. 



And for each edge in E and for each vertex v∈V  xv this is greater than equal to 0. So, now recall

that we have proved that you know every extreme point of this linear program is half integral. 
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Recall every extreme point of the above linear program poly tope is half integral. In particular

every extreme optimal points optimal solutions are also half  integral.  So,  the first  step is to

compute this extreme compute and optimal solution. So, reduction rule what is the let us write

the reduction rule. So, we first apply those reduction rules also this is an additional reduction rule

which is so this reduction rule we have 0, 1 to before now we have reduction rule 3. 

What does this reduction rule say? That solve the linear program so first we apply reduction 0, 1

and 2 as long as we can and then we apply reduction rule 3. Solve the linear program let (xv
∗)v∈V

be an extreme optimal solution of the vertex cover LP then what we do is that, that means what

that means xv is a half integral and we pick all the vertices which are so define these sets V 1 is all

those vertices such that xv
∗ is 1 V 0 is all the vertices in v such that xv

∗ is 0 and V 1
2

 is v∈V  such

that xv
∗ is 

1
2

. 

So, reduction rule deletes all vertices in V 0 pick all vertices in V 1 and returns the induced graph

on V 1
2

. 
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So, picks all vertices in V 1, adjust the budget appropriately that means new k prime is K - size of

V 1. Then it deletes all vertices in V 0 and returns the induced graph on V 1
2

 it all does this if LP

OPT the optimal value of LP is less than equal to k. If LP OPT is greater than k then you know

the size of the minimum vertex cover is at least LP OPT, LP OPT is a lower bound this you have

seen in design of approximation algorithms many times. 

Because the vertex cover problem is basically an integer linear program and we are doing linear

programming relaxation. So, hence the LP OPT is a lower bound on the OPT so if LP OPT is

greater than equal to k then clearly there is no vertex covered of size at most k if LP OPT is

greater than k then there is  no vertices cover  of psi  at  most  k,  hence the instance is  a  NO

instance.  In  this  case  the  algorithm,  the  kernelization  algorithm simply  outputs  dummy NO

instance. 

But now why if LP OPT is less than equal to k whatever the algorithm is doing why it is an

equivalent instance that is not clear. Of course, you know because the solution is half integral all

the vertices for all the for every vertex xv
∗ will be either 0, 1 and half. So, this part is clear that V

is union of V 1, V 0 and V 1
2

 that part is clear. This is since (xv
∗)v∈V  is half integral. 



But why you know we are deleting V 0 and picking all vertices in V 1 part of solution why there

must exist a minimum vertex cover which is contained in V 1 union V of that is not clear and that

needs a separate proof. 
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So, that is our next theorem. It is by Nemhauser and Trotter. It sees that there exists at least one

minimum vertex cover which is contains  V 1 and is contained in  V 1 union  V 1
2

. So, there is a

minimum vertex cover is of the input instance such that you know S is a subset of V 1 union V 1
2

and this contained in V 1. So, proof so let s star subset of V be a minimum vertex cover of G. So,

what you do is that from e star you remove all vertices in V 0 and pick all vertices in V 1. 

So, define, S = S∗ - V 0 union V 1, claim S is also a vertex cover, why, this is so because this is

true since no every vertex has an edge and at least one edge because there is no isolated vertex

and  because  those  reduction  rules  0,  1  and  2  has  been  applied.  And  since  for  each  edge

e={u , v }∈E we have xu+xv≥1. So, if a vertex u belongs to V 0 that means xu=0 then xv must be

equal to 1. So, since this then if u belongs to V 0 then v belongs to V 1. 
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That is every neighbour of V 0 is a vertex in V 1 that means here is V 0 there are some edges first

see that V 0 must be an independent set also V 0 must be an independent set. There cannot be an

edge like this because then both of its endpoints this value is 0 and that means therefore that is

this constraint is not satisfied. So, there cannot be an edge like this within  V 0,  V 0 must be an

independent set moreover all the neighbours of V 0. 

This must be in V 1 is the if this is the neighbour of V 0 this must contained in V 1 it cannot even v

in V 1
2

 because if it is in V of then also it is not these edges the constraint for these edges are not

satisfied. Now what are the edges, where are the edges.  Of course,  the edges within  V 1 are

satisfied because all the edges or we have picked entire V 1 and here is V 1
2

 all the edges within V 1
2

are satisfied all the edges across V 1 and V 1
2

 are satisfied. 

And all the edges between V 0 and V 1 are also satisfied and of course there is no edge between V 0

and V 1
2

 there is no such edge. Hence is a vertex cover, it covers every edge S is a vertex cover of

the input instance this proves the same. Moreover, we have S is contained in  V 1 union  V 1
2

 it

contains all vertices in V 1 and it does not contain any vertex of V 0. So, and this is a superset of

V 1 it contains all vertices of V 1. 



So, this S has all these properties this set the minimum vertex cover we are looking for S all

these properties it is a vertex cover. Next, we claim, next we prove that S a minimum vertex

covered for that we have a minimum vertex cover namely S∗, S∗ is a minimum vertex cover and

what is cardinality of S - cardinality of S∗ we need to show that this is less than equal to 0. So,

what is this so this is no from is what are the vertices which are in S but not in S∗. 

This is the vertices in V 1 - S
∗. So, these are the vertices which wherein which are in S but in not

in  S∗ minus now there are some vertices which are in  S∗ but not in S which are these are  V 0

intersection S∗ because we have, removed all the vertices in V 0. We this is to show this is less

than equal to 0 this is to show. 
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That is to show that cardinality V 1 - S∗ this is greater than equal to cardinality V 0 intersection S

star. For that let us define epsilon = minimum of mod of xv
∗ - half such that v is in V 0 union V 1

make it half of this. For this we now decrease the fractional values from here and increase the

fraction values from there. We will construct another solution and will show that if this is not the

case if this inequality does not hold then we have a solution of value less than the solution for S

term. 



So, which is less than LP-OPT. So, define another solution ( yv )v∈V  as follows yv is xv−ϵ  if v is

in  V 1 - S star this is  xv+ϵ  if v is in  V 0 intersection S star and  xv otherwise. So, now what is

∑v∈V
y v just a minute we need to show that this is less than equal to 0 that means this is less

than equal to 0 and proof by contradiction so for contradiction let us assume that mod of V 1 - S

star is strictly more than V 0 intersection S star. 

Now under  this  assumption we will  show that  yv has less  than  yv is  less  than now all  the

variables in V - S∗ their value has dropped and all the variables in V intersection S∗ their value

has increased.  So,  more number of variables values has  dropped and less number of  values

variables has increased. So, sum of yv is less than sum of xv then all we need to show that yv is

indeed a feasible solution which can be shown by easy case analysis. 
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So, by easy case analysis, it can be shown that ( yv )v∈V  is a feasible solution of the LP is (xv
∗)v∈V

but this contradicts that  (xv
∗)v∈V  is an optimal solution. But this contradicts that  (xv

∗)v∈V  is and

optimal solution. Hence, we have this that size of  V 1 -  S∗ this is less than equal to size of  V 0

intersection S∗ and thus S is a minimum vertex cover. Now what is the size of the kernel? Size of

the cardinality V 0 union V 1
2

 is less than equal to not  V 1. 



So, this is the output of the algorithm I have to do the kernelization algorithm summation you

know v in V 1 union V 1
2

 twice ∑v∈V
xv

∗ but this is twice LP OPT, but LP OPT must be at most k

this is less than equal to 2k. So, size of kernel, the kernel contains the output instance which is

called kernel contains at most 2k vertices which is an improvement from our quadratic kernel

which contains at most k square vertices because it contains at most k square edges. So, we will

stop here today.


