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Maximum Bipartite Matching, Fattest Augmenting Path

Welcome in the last lecture we have seen how a flow can be decomposed into elementary

flows path flows and cycle flows. Using this we will see algorithm again due to Edmonds and

Karp which is a specialization of Ford-Fulkerson method.
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So this lecture 2.1 so let us recall earlier algorithm of Edmond Karp for computing maximum

flow used to pick the shortest unawaited s to t path. But a more natural greedy approach

would be to pick the path where maximum flow value can be pushed. So that  particular

approach is called choose that is the idea is to choose the fattest augmenting path that is the

path with maximum bottleneck capacity.

So bottleneck capacity of a path is the minimum capacity of all the edges in the path you can

push at  max that  much flow along the  path.  Now can such a  path  can  be  computed  in

polynomial time can search it path be computed in polynomial time? And the answer is yes I

let  you check you can either  modify BFS or modify Dijkstra’s shortest  algorithm or you

modify appropriately the Kruskal’s minimum spending algorithm.



And I will let you check let you try this homework to get such a path. Now once I have such a

path what I will do is exactly same it is same as Ford-Fulkerson methodology that you push

that much flow maximum amount of flow along that path. And again the keep iterating unless

there is no s to t path in the residual graph so how iterations are needed? 
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You know let f star be the value of maximum flow again if their capacities are irrational or

arbitrary relational numbers then it is possible that it never converges it never holds it never

terminates. It with more alteration it will go towards the optimal value but it never terminates

that is possible.  But we will show that you know if another Lemma if the capacities are

integer then the algorithm makes O(log|f ∗|)  many iterations.

Proof so the basic idea is at every step we are augmenting substantial amount of flow and if

we  are  doing  this  in  every  step  then  we  should  not  take  many  iterations  to  reach  the

maximum value. So let f ’  be the current so considering any ith iteration and let f ’  be

the current max flow value in the residual of Gf . So of course in the beginning G is Gf

and f ’  is f ∗ . 

Now we use the flow decomposition theorem that if prime can be decomposed into at most

cardinality e many flow paths f ’  can be decomposed into at most cardinality e many path

flows.  Hence  there  exists  path  flow  in  Gf which  carries  at  least  value  of  f ’  by

cardinality E flow. And this algorithm picks the path which were the maximum amount of

flow would be pushed. So in; each iteration it must it in current iteration it augments at least

this much flow.
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So in current iteration the algorithm augments at least value of f ’  by E. And so the value

of maximum value iteration value of max flow in the residual graph in the next iteration in at

most value of the f ’  is the next flow value in the current iteration and value of f prime by

E was augmented so this is the thing that moves this which is 1 – 1 by E times. So the max

flow value drops by a  factor of 1 -  1 by E so hence after  |E|×ln(|f ∗|)  iterations  the

maximum value in Gf  is at most.

So it is E times Lon extra iterations so it is if there should be a time there is a factor of E

times foreign lon of, f star iterations. What should be the thing? At the beginning it is value of

f  star  and this  is  1  -  1  by E to be power  |E|×ln(|f ∗|) .  So this  is  less  than  equal  to

f ∗ e−ln|f
∗|  which is strictly less than 1 which is less than which is 1. This inequality is strict.

Now because so after |E|×ln(|f ∗|)  menu iterations the number of the value of maximum

value the value of maximum flow drops below one and because now the capacities of all the

edges are integer the value of max flow after E times lon f terminal iterations must be 0.

Hence this algorithm terminates after these many iterations. So what is the running time of

this algorithm?
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Run time now we go of  |E|×ln(|f ∗|)  this is the number of iterations that it runs and in

each iterations can be exit executed using Dijkstra’s algorithm modified version of Dijkstra’s

algorithm which takes  V logV  time using Fibonacci series or E log time using standard

min heap. So this is the running time and using that you know this if value f star is small

compared  to  the  number  of  edges  then  this  algorithm  is  faster  than  the  Edmond  curve

algorithm which picks the unawaited shortest s-t path for flow augmentation good.

So these are the 2 algorithm and the currently known based run time for computing max pro

value current based algorithm current fastest algorithm takes O(|V|×|E|)  time good. Now

what I will see will show an important application there are many application of this flow

many problems can be reduced into max pro and we will see once such application. So our

application is maximum Bipartite matching.

So what is the Bipartite graph? It has 2 vertices can be partitioned into 2 sets X, Y X and Y

they  form  induced  independent  sets  there  are  no  edges  completely  contained  in  X  or

completely contained in Y and all edges are cross edges only. And here I am looking for

matching so matching is a set of edges containing edges not sharing any end point. And we

are looking for maximum matching of a Bipartite graph so the size of the matching is the

number of edges it contains.
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So what we will do is that we will reduce this maximum Bipartite matching problem to max

flow. So and this reduction is a nice tool using which we can connect various problems now

so let me define the slightly define this formally. Suppose I see that there is a reduction from

problem P to problem Q it is basically an algorithm a which maps instances of p set of all

instances of P it maps there is an algorithm A to instances of Q. 

So reduction is basically an algorithm and so if this instance X is mapped to A of X we

basically need 2 conditions one is that both are equivalent you know from the solution of A x

one can efficiently that means in polynomial time can compute a solution of x that is it. And

the second one is that algorithm A itself is efficient that means it runs in polynomial time. So

here  will  reduce  maximum Bipartite  matching  to  max  flow that  means  we will  give  an

algorithm  to  construct  instances  of  max  flow  from  an  instance  of  maximum  Bipartite

matching.
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So let G = V = x union y, E so x and y are 2 part of the bipartite graph G be any instance of

maximum bipartite matching. So we construct so I have a graph g x to y is x is y undirected

graph there are various sort of edges. And we construct mu graph  G’  which is a flow

graph where the vertices will be B prime is V union s and t is introduced to a new vertices is

and t and I will describe the edges. 

So basically I am taking this vertices only x and y and adding creating to new vertex is and t.

And this E prime for each vertex in x I am adding in each from x to that vertex s to x for all x

in x this union for all vertex in y I put an H from those vertex to T and all the edges from x to

y which were undirected edges is direct them from x to y. Such that x, y this  edge x, y

belongs to E the matching instance. So these are the edges and what are the capacities we

define the capacity of every edge to be 1. 
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Now we claim that size of maximum matching in G is same as value of maximum s to t flow.

So  whenever  we  have  quality  one  way  to  prove  equality  to  show  inequalities  in  both

directions both greater than equal to and less than equal to. Proof so let us prove this direction

that value of maximum matching in G is at least the value of the maximum s, t flow. 

So let us take a maximum s, t flow and seems all capacities are 1 which will actually a integer

we know that there is a maximum flow value where the flow values are integer the flow of

each age is integer. So let f be max flow with integral flow on average but how does the

capacities are only one. So intake and if the flow values are integral all the flow edges if the

edge there is a flow the flow value will be 1.

Now you see that all the edges capacities are one so relate P be the set of this x, y set of flow

edge which carries unit flow edges from x to, y. Let us define Q to be set of all edges x, y

such that there is a flow edge from x to y. Now because the capacities of all vertex on x and

all vertex on y are 1 the capacities of all incoming and outgoing the capacities of all incoming

edges at x is 1 any 2 flow edge cannot be incident on 1 vertex of x.

Similarly if the only capacity of only outgoing edge of any vertex at y is y is 1 so the outflow

of any vertex can be at most one in any vertex in y can be at most 1. So any 2 edges cannot

have the same vertex in y common. So that means that y Q is a matching. So if I have a flow

value is s, t flow then I have a matching with whose size at least the flow value. 
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Similarly for the other direction I need to show that this is less than that if there is a matching.

So let us draw this do this pictorially if there is a matching which matching means they do not

share any end point. So these are the matching’s then constructing s, t flow is very easy pick

this end points of matching edges send one unit of flow along this to these vertices and send

along one unit of flow along this matching it is from x to y and this matched vertex in .

You can send 1 unit of flow from that vertex to f so we have a flow and we have an s to t

flow of value same as the size of maximum matching. And hence the value of maximum s t

flow can only be more which concludes the proof. So it is as you can see you know from

Kleinberg Carlos book provides lots of example and you will see that a various problems of

various flavours they can reduced into this max flow problem. So we will stop here today

thank you.


