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Faster FPT Algorithm for Vertex Cover

Welcome to the last class we have seen what is parameterised algorithm, what is an FPT

algorithm and we have seen easy 2 to the power k time algorithm for finding a minimum

vertex cover and now we are designing a faster algorithm for minimum vertex cover. So, let

us continue.
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So, faster FPT algorithms for vertex cover and for that we will use that observation. What is

the observation? That if the maximum degree of the graph is at most 2, minimum vertex

cover can be computed in polynomial time. Now what is the algorithm? First of all, again it is

a  recursive  algorithm again,  it  is  a  search  tree-based  algorithm,  the  base  case  is  if  the

maximum degree of the graph is at most 2, then return then compute minimum vertex cover

in polynomial time and return it return YES. 

So, let us talk about decision version that is if it is size is at most k it means we are given a

graph G and an integer k and the question is what is the size of the minimum vertex cover at

most k or not. 
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So, next otherwise the minimum degree, so you will comment otherwise the max degree

maximum degree of the graph is at least 3. So, pick such a vertex, so let u be such a vertex of

course we will have those base cases. If k is 0 and there is an uncovered there is an edge in G

then return FALSE, else if k 0 and else if not k is 0 if the graph does not have any edge, then

return TRUE. 

Else what you do is that let u be a such vertex either you pick u and recurs but if you do not

pick u you have to pick its neighbourhood of u. So, return in this case return call the vertex

cover problem this function recursively and you remove the u and drop the budget by 1 to

make  it  k  is  less  than  equal  to  0  or  either  after  picking u  and you deleting  you in  the

remaining vertex there is a vertex cover of size k - 1 or look for is there a vertex cover of size.

If you do not pick you need to pick the neighbour of u, N (u) is the set of vertices which has

direct edge with you in this case drop the budget by  N (u). So, this you return, so what is

N (u)? N (u) is set of vertices such that there is an edge from B, so this is the algorithm. So,

let us analyse it.
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So, pictorially let us see G and k, now in one branch it picks suppose u is that vertex, so G, k

- 1 and in the other branch it is G and you pick the neighbourhood in u and k - cardinality

N (u) which is like you know the sum graph G’ and k’ and k’ is N (u) is at least 3 because the

degree of u is at least 3. So, k’ is less than equal to k - 3 and so on. Now here also the height

is k but one branch is much more shallower. 

So, how many nodes are there? So, let us see so let T (n , k ) be the maximum number of nodes

in the search tree of the above algorithm on any graph with in vertices where we are looking

for vertex covered of size at most k. 
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So,  T (n , k )≤T (n−1 , k−1)+T (n−3 , k−3) and of course  T (n ,0)=1 this is for all n. Now

because you know n and k are dropping by the same quantity, so this recursion tree will at the



leaf k will be heated 0. So, it is enough. So, define T prime of k so focus on k because it will

be  a  function  of  k  only  T (n , k ) the  max  of  in  T (n , k ).  Now  then  what  is  T ’(k)?

T ’(k)≤T ’ (k−1)+T ’(k−3) and the base case is T ’(0)=1. 

Now we need to solve this recursion, now this is a standard there is a standard technique to

solve this recursion so for that I will solve this we will give the recursive solution. So, let

T ’(k) be less than equal to the there is a form of a form of T ’(k) with this sort of recursions it

is c λk  for some constant c and λ . Now let us put it here, this is c λk  we need this to be less

than equal to.

For these to hold which this enough to have  c λk≤c λk−1+c λk−3 . If this is true then this

inequality holds because then T ’(k−1)≤c λk−1 and T ’(k−3)≤c λk−3 and if this sum is more

than c λk  .

Now this is if and only if λ 3−λ−1≤0, so solving this what we get is λ  is and of course c and

λ  must be positive and c must be positive and λ  should be greater than 1. So, with all these

constraints what we have is λ  is we need to choose λ  to be equal to for λ  = 1.4656 above

inequality holds. 
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Hence the number of nodes in the search tree of the above algorithm is at most 1.4656k . This

will be greater this should be greater than enough to have this. Now the computation at every

node of search tree, now what is the computation? So, let us go to the algorithm, so at the



base case maybe we need to find a minimum vertex cover for a collection of cycles and paths

a disjoint collection of cycles and paths. 

And the rest of the computation is takes order in time. So, the computation at every node of

the search tree takes order in time even for the base case when the max degree is at most to

finding the minimum vertex cover takes order of n + m time you need simply needs to iterate

over all the edges and but the number of edges is at most two times the number of vertices

because the degree is at most 2. 

It is basically like the same number of vertices because you know sum of degree is twice the

number of edges. So, the number of edges is at most the number of vertices in that case, so in

order of n + m is order of m order of n only. So, computation at every node circuit is ordering

time. Hence the runtime of the algorithm is O (1.4656k n). 
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So,  in  general  how  to  solve  recurrent  solutions  of  the  form  say

T (k )=T (k−d1)+T (k−d2)+...T (k−d p). It is like you guess let d be max of {d1 , ... , d p} and

you guess  T (k )≤c λ k, the value of c will get from the base case of this recursion. So, this

boils down to it λ k is greater than equal to you know λ k−d1+...+λ k−d p.

Which is if and only if λ d−λk−d 1−...−λ k−d p≥0 . So, next what we will see is what is called a

kernelization. So, often you know in real world instances or in real life we do some pre-

processing before applying the algorithm to solve the problem. So, we often execute sum



efficient pre-processing techniques or pre processing using algorithms on the input instance

before running the main algorithm to solve the problem.
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Kernelization formalizes such pre-processing techniques. For example, for vertex cover we

can simply delete  all  the isolated  vertices.  The input  instance  can contain  some isolated

vertices and you can simply delete it without affecting the optimal solution or you know there

are  some more  of  this  sort  of  preparation  techniques  which  can  sort  of  clean  the  input

instance and focus on the core problem. 

For example, for vertex cover all the degree one vertices we can delete and take the take its

neighbour as in the part of optimal vertex commercial and this sort of simple technique.  So,

you can use to clean up the data to do the pre-processing. So, what is a kernelization task? So,

the kernelization algorithm takes a parameterized problem instance as input and outputs and

equivalent instance of bounded size. 

What do I mean by that? So, suppose there is an instance x,  k is  the parameter and the

parameter range algorithm take x, k, this algorithm A and outputs an equivalent instance that

means this  new instance the output  instance is  a  YES instance. If  and only if  the input

instance is a YES instance and the size is bounded by some parameters by some function of

parameter alone. 

So, size of  x’ is less than equal to G of k and  k’ is also less than equal to  f (k ) for sum

computable  functions  if  and  G.  So,  the  next  class  we  will  see  some  examples  of



parameterized algorithms for vertex cover and some other problems and then we will see that

you know this condensation algorithm is really, the other side of the parameters algorithm

and its connection to FPT algorithms. So, let us stop here for today.


