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Welcome, so in the last class we have seen the randomized rounding algorithm for set cover and

the two-factor  approximation algorithm for vertex cover.  In this  lecture we will  see another

technique of designing combinatorial algorithm, combinatorial approximation algorithm using

the framework of linear programming duality and that is called LP duality schema, it is called

primal dual schema.
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Recall you know we have discussed that there are two ways to desire to use linear programming

for approximation algorithm design. One is directly solve the linear program and use the solution

to  come up  with  an  approximation  algorithm.  These  are  like  linear  programming  rounding

techniques. The other is use linear program to either design an approximation algorithm or to

analyse it. 

Now  we  have  seen  the  method  of  dual  fitting  to  analyse  a  combinatorial  algorithm  for

combinatorial approximation algorithm using linear programming duality. Primal dual schema is

another  technique  of  for  designing  a  combinatorial  algorithm based  on  linear  programming



duality combinatorial approximation algorithms. So, again in this method we are not solving the

linear program. 

So, idea is use primal and dual linear programs to design combinatorial approximation algorithm.

Here we do not need to solve any linear program unlike the LP rounding based approximation

algorithm and this primal dual schema has been used you know more effectively for designing

exact algorithm. So, this schema this technique has conventionally been used to design efficient

in  algorithm  design  by  efficient  polynomial  time.  If  not  mentioned  otherwise  it  means

polynomial time efficient exact algorithm.
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So, we suitably extend this technique to design efficient approximation algorithm. So, what is the

technique so, overview of the technique? Suppose we write our problem as a linear program in a

standard form in integral linear program and then we relax it to a linear program and we have

written it in a standard form that means minimize ∑ j=1

n
c j x j subject to ∑ j=1

n
aij x j≥bi. 

This is for i = 1 to m we have m such constraints and x j is greater than equal to 0 for j = 1 to n.

So, this is a linear program in standard form and let us call it the primer linear program, this is

the primal. Now let us write this dual linear program which is maximize  ∑i=1

m
b i y i subject to



∑ aij y i≤c j, i = 1 to m. This is we have for all j = 1 to n and then we have y i≥0 for i = 1 to m

this is the dual linear program. 

Now recall  we  have  seen  the  complementary  slackness  condition  it  is  a  constraint  it  is  an

equivalent condition when a solution for primal and a solution for dual when it is optimal. Let us

recall so suppose (x j
∗)j∈[n] and ( y i

∗)i∈[m] you know these are one is primal solution another is dual

solution and both are optimal if and only if whenever you know either x j
∗ a 0 or if it is non zero

then  the  jth  constraint  jth  dual  constraint  is  type  that  constraint  that  inequality  holds  with

equality. 

That is a primal complementary slackness condition and same is for dual. It means this dual

solution is optimal even if and only if y i
∗ if it is 0 for all i∈[m] or the ith constraint ith primal

constraint is tight it holds with equality now that is for exact solution. But now we are what we

are  looking for  over?  Looking for  approximate solution.  So,  we extend this  complementary

slackness condition for the need of designing approximation algorithm. 

(Refer Slide Time: 10:37)

So, let me write. So, let me state two conditions primal complementary slackness conditions with

parameter alpha. What is the condition? That alpha of course alpha is greater than equal to 1 that

for each primal variable are x1 , ... , xn for each j∈[n ] either x j is 0 or the dual constraint the jth



dual  constraint  hold  approximately.  It  does  not  hold  with  exact  equality  but  it  should  not

approximately calling. 

What do I mean by that jth dual constraint? It is of course needs to be less than equal to c j but it

is at least 
c j
α  that is what we mean by it holds with equality approximately. It is not it is off from

equal to c j by at most of factor of α  it is of from equality by at most of factor of α . So, this is

primal complementary slackness condition with parameter α . 

Similarly, let us define dual complementary slackness condition with parameter β . Of course, α

is also greater than equal to 1. What is the constraint again? For each dual variable you know

i∈[m] either y i=0 or the ith primal constraint that means ∑ j=1

n
aij x j this is of course greater than

equal to b i. So, this will hold this greater than equal to b i but this is less than equal to b i times β . 

So, now what will happen if a solution a primal solution and a dual solution need not be optimal

satisfies this approximate version of complementary slackness conditions. 
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Then we claim that now we will see that these solutions will help us to design an approximation

algorithm.  So,  for  that  is  right  claim so  these  are  in  some sense  x and y  because  they  are

satisfying the primal and dual complementary slackness conditions approximately. So, they are



approximately optimal that is the intuitive statement of this claim. So, if x j , j∈[n] and y i ,i∈[m ]

satisfy  primal  and  dual  complementary  slackness  conditions  with  parameters  α  and  β

respectively. 

Then we have the cost of the objective function primer objective function at this primal solution

is approximately minimum it is not too high that is the claim that  ∑ j=1

n
c j x j this is less than

equal to  α β  times summation. You know in the exact complementary slackness condition the

primal  solution  and  dual  solution  these  values  will  coincide  but  here  it  will  coincide

approximately with the factor of α β . 

So, what is the dual solution is the value of the dual objective is  ∑i=1

m
b i y i. Proof,  ∑ j=1

n
c j x j.

Now we replace c j so c j is at you I will use this inequality figure is at most α  times ∑i=1

m
a ij y i.

This is at most α aij yi x j. So, that is what we do. We simply use that since c j is less than equal to

α∑i=1

m
aij y i. 

Now what we do is that we take α  outside this is α∑ j=1

n

∑i=1

m
aij y i x j . Now when we have two

finite sums finite double sums when we can reverse the order of the sum that we can do if both

the sums are finite. So, this is α∑i=1

m

∑ j=1

n
aij y i x j. Now y i does not depend on j so we take y i

outside of the inner sum.
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So, this is α∑i=1

m
y i∑ j=1

n
aij x j≤α ∑i=1

m
yiβ bi=α β ∑i=1

m
y ibi .
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Now we will see using primal dual schema we can design a set cover approximation algorithm

for set cover. So, approximation algorithm for set cover. The idea is to come up with primal and

dual solutions which satisfy the complementary slackness conditions with parameter  α  and β .

So,  we  will  choose  α=1 and  β=f  was  the  maximum frequency  of  an  element.  It  is  the

maximum number of sets that an element belong to. 



And this is the typical in designing approximation algorithms using primal dual schema. We

typically  set  either  α=1 and  β  =  the  target  approximation  ratio  or  β  =  1  and  α  =  target

approximation ratio. So, what are the primal conditions let us write. For set cover instead LP the

primal conditions for all set is in this either x is 0 or summation because α=1 primal conditions

has to be satisfied exactly. 

Summation e∈U  such that no summation e belongs to s no set is over packed, ye = cost of s. So,

this is the primal condition primal complementary selectness condition with α=1 and the dual

conditions. This condition this is a primary condition and dual condition is for all element in u

we have either ye=0 or you know dual condition is satisfied approximately. That summation the

constraint the primal constraint corresponding to e which is ∑s∈S : e∈s
xs≤f  greater than equal to

1 because β  is f. 

Now what we will do is that we will change these variables x and y's. These solutions will

change  in  such a  way that  you know this  dual  feasibility  is  ensured.  So,  here  is  a  natural

algorithm increment primal variables until some dual condition becomes tight. So, do not this

just let me just clearly explain the algorithm and then we will see. 

(Refer Slide Time: 27:49)

So, let us see the algorithm. So, initialize you know all xs to 0 and ye to 0 this is for all e∈U  and

s∈S. So, this ensures that at the beginning you know all these two conditions primal condition



and dual condition are stress satisfied because all variables are set to 0. Now what we do is that

we maintain we built a set cover incrementally. So, while W is not a set cover what we do? Pick

an element e∈U  which is uncovered by W. 

Now what we do is that for that variable which is maybe now at 0 we increasing its value unless

the if we increase the value, you know this primal condition needs to be satisfied. So, we keep

increasing the value unless we keep increasing the value of y as long as we can and when some

set. So, if we keep increasing this equality this summation y this dual constraint may become

tight and then what we do is that we pick that set and for that xs becomes 1. 

So, let me write. Increase ye until for some set s we have s is not equal to 0 sorry S = 0 it is not

picked and summation ye in s becomes tight because further y cannot be increased. Now what

we do is we pick such a set. Then pick so these sets are called tight sets. So, pick all tight sets.

What is a tight set? As it is tight is if summation ye in is equal to f so that is the while loop, 4 is

output W.

(Refer Slide Time: 32:10)

Now you know the analysis  is  trivial  because  the  algorithm by design output  are  set  cover

always.  Now what  is  the  approximation  ratio?  What  is  ALG? ALG is  summation  and also

observe  that  you  know  in  every  iteration  the  primal  and  dual  complementary  slackness



conditions are satisfied. So, these conditions both the conditions are satisfied throughout the run

of the algorithm. 

It is satisfied at the beginning and throughout the run of the algorithm it is satisfied. So, ALG

gives ∑s∈S
c (s )xs and but this is what? This is at most alpha times beta times dual. Let us write

this way because the dual objective function is not essential is the dual objective function at ye, e

in a and the dual objective function value is a lower bound on OPT. This is alpha times beta

times OPT.  

So, the approximation ratio is alpha times beta and we have picked α=1 and β=f  this is f times

of OPT. So, hence ALG by OPT is less than equal to f. Hence the approximation factor is at most

f so, using the schema whenever we design an approximation algorithm the approximation factor

is α β . So, to design a better approximation algorithm we should try to minimize the factor α β .

So, let us stop here today.


