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Randomized Rounding

Thank  you  welcome  so  we  are  doing  approximation  algorithm  design  using  linear

programming  rounding.  And  in  the  last  class  we  have  seen  that  the  vertex  cover  linear

program is half, integral now using that we will design a 2 factor approximation algorithm for

vertex close.

(Refer Slide Time: 00:51)

Let us recall the linear program minimize ∑v∈V
w(v) xv subject to each edge being, covered

means for each e={u , v }∈E the constraint is xu+xv≥1. And for all vertex v, xv≥0. And this

every extreme point is half integral in particular typical algorithms for solving linear program

for finding the optimum solution for linear program outputs are extreme point. So in particular

we can compute and optimal extreme, point in polynomial time.
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Let x∗=(xv
∗)v∈V  be an optimal extreme point what our algorithm does is simply picks all those

vertices  whose  corresponding  variable  the  value  is  either  half  or  1.  So  algorithm  let

W={v∈V∣xv
∗=1∨xv

∗=1
2
} output W. Claim the above algorithm has an approximation ratio of

2 of at most 2 proof the value of the objective function at x∗ is, called this x∗ is a lower bound

on opt. 

(Refer Slide Time: 06:50)

So opt is greater than equal to  ∑v∈V
w(v) xv

∗ on other hand ALG gives  ∑v∈W
w(v). Now

these can be written as this is less than equal to for every vertex v∈W  the value of xv
∗ is at

most 1 this is  w (v )2 xv
∗. But the vertices who are not in W their  x∗ value is, 0 so this is

2∑v∈V
w(v )xv

∗ but this is at most opt this is at most opt. 



So we have ALG by opt is less than equal to 2 which concludes the proof this is a typical LP

rounding that you solve the LP take the solution find out interesting structure and see how you

can exploit it to design an approximation algorithm. So you have seen 2 algorithms for this,

kind  one  is  f  factor  approximation  algorithm  for  set  cover  and  2  factor  approximation

algorithm  for  vertex  cover  next.  We  see  another  interesting  technique  which  is  called

randomized rounding.

(Refer Slide Time: 09:13)

So for that let us apply it on weighted seat cover so let us write the linear programming for

linear programming relaxation minimize summation sum of our sets in the collection cost of is

times x, of is subject to constraint is for all element e in the universe over all sets s script S

such that e belongs to s x is this should be greater than equal to 1. And we have for all set is in

script S x s is greater than equal to 0. 

So now what we do is that we solve it so let (xs
∗)s∈S we and optimal solution next approach is

treat this numbers like x's these are, positive numbers and for optimal solution  x∗ is lies in

between 0 and 1. 
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So treat x star is like probabilities of picking s so in particular the algorithm is for all set s in

script S so construct a solution. So let w be the set cover that we are constructing initial is an

empty set and for all s you know with probability x∗ is execute w is W∪{s} means for all is

put s in the set cover, that we are constructing with probability xs
∗. And we will see that this

step you know this with this just running this step once all elements are covered with constant

probability.

Now we have seen in randomized algorithms that to boost the success probability we need to

execute some steps execute the algorithm many times. So that has the third step repeat step 2

say l times let the, analysis dictate how we should pick n what should be the value of l so that

all elements are covered with say constant probability it is a probability at least 99 percent. So

analysis first is what is the probability that an element is covered by executing step 2 once?

So let so here is the claim in one run of step 2 every element let e be any element for in one

run of step 2 the element e, let us call it x because you know this will come then is also. So let

us call this e the element e is covered with probability at least  1−1
e

 proof so what is the

probability that an element is covered so is x∗.
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So let e is present in case it is in S1 ,…,Sk in the collection so e will be covered if any one of

them is picked. So the element this a if any one of S1 ,…,Sk is, picked so probability that a is

covered is 1 - probability that a is not covered this is 1 - probability a is not covered this will

happen if and only if none of S1 ,…,Sk are covered. This is probability that none of S1 ,…,Sk

is picked now each S1 ,…,Sk is not picked independently of each other. 

So this is product to k probability that Si is not picked 1 - product i = 1, to k Si is not picked

that happens with probability 1−xS
∗. Now this can be written as 1−∏i=1

k
e−x s

∗

 since 1+λ≤eλ

for all real number λ . 
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So we apply this on -xs
∗ this is equal to  1−e∑i=1

k

xSi
∗

 but what is,  ∑i=1

k
xSi

∗≥1. Because  x∗ is a

solution to this LP and S1 ,…,Sk are the sets where this element a, belongs this is at least one.

So this  is  greater  than  equal  to  1−e−1 which  concludes  the  proof.  Now each element  is

covered with this much probability now what is the probability that all elements is covered?

So, probability that e is not covered after repeating tape 2 l times so what is the probability

that a, is covered is at least 1−e−1. So the probability that element a, is not cover. So in one

run of the algorithm of one of step 2 is at most  
1
e

 and each run is independent so this is

element a is not covered this at most 1 by e times to the power l which means 
1
e

 times every

time it is not covered.

Now we want to ensure that this probability is 1 over poly in because now at the end we need

to do a union bound over all elements. So choose l equal to let me write this way this is less

than equal to say 
1

n2
 this is for what is choose l equal to twice. So for l equal to twice Lon n is

one by n square.
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Now the probability now do a union bound, using union bound we obtain probability that

every element  is  covered by w after  executing step 2 twice  n2 in times.  This is  1 minus

probability that there exists and element a∈U  such that a is not covered by w after executing



step 2 twice Lon n times this is greater than equal to 1 minus there are n elements. So n times

we are adding 1 over n square this is 1−1
n

.

(Refer Slide Time: 27:12)

So, with probability at least 1−1
n

 our algorithm outputs are valid set cover okay now what is

the  approximation  ratio  approximation  guarantee?  So  again  the  value  of  the  objective

functions at an optimal point that is a lower bound on optimum. So opt is greater than equal to

summation is in script is cost of is times  xS
∗ but what is ALG? ALG is the output of the

algorithm it is, a cost of the state w it is a randomized algorithm so you should be talking

about expected value of ALG.

That is summation is in script is c is times probability that is belongs to w, a is picked by the

algorithm. But this is submission in 1; iteration it is fig with probability xS
∗ and in the worst

case in each iteration and we run it for l iterations and in the worst case all the sales that you

pick could be disjoined. And so this is l times at most this because if we pick the same set in 2

repetitions or 2 run of step 2 then we just store one copy this is 2 ln n∑s∈S
c (s)x s

∗.

But this is at most of this is twice learn in times out so hence we have expected value of ALG

by opt is less than equal to 2 ln n. So it is the approximation factor is at most twice long so, we

will stop here today.


