
Selected Topics in Algorithm
Prof. Palash Dey

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 50
Dual Fitting (Continued)

Welcome, so, in the last class we have started looking at dual fitting and using dual fitting we

have analysed the greedy set cover algorithm. So, in today's class we will use a greedy algorithm

for solving a generalization version of set cover problem and we will analyse it using dual fitting.

(Refer Slide Time: 00:48)

So, dual fitting so our problem is set multi covered. So, what is the input? The input is again a

universe u and a collection of sets with cost function c from this collection to real number and for

each element in the universe a certain requirement how many times it must be covered so re

e∈ U . What is the output? Collection of j 1 to s1
’ ,... , sk

’ in curl is such that you know for each

element e∈ U e is present in at least re sets in s1
’ ,... , sk

’ that is one and sum of costs is minimized.

(Refer Slide Time: 03:54)

So, we will extend the greedy algorithm for set cover naturally to this more general set cover. So,

greedy algorithm for set multi cover. So, let us say we say an element e is alive if it appears less

than re many sets picked so far. And in every iteration the algorithm picks the most cost-effective

set that is the set with minimum average cost per alive element. That means if for a set S if it

contains 10 alive elements then its cost effectiveness is cost of that set by 10.

That is the average price with which it covers an element. The algorithm halts when no element

is alive. Again, the cost is distributed across the elements covered.

(Refer Slide Time: 08:09)

So, when S is picked its cost is distributed equally among the alive elements that it covers. That

is if S covers an element e for the jth time then price of e j price of e j is the cost of the set picked

by number of alive elements in S. Hence ALG the cost of the solution picked by the algorithm is

sum of cs picked by the algorithm and because the cost is distributed among across its alive

elements this is sum over e∈ U , j = 1 to re price of e j.

And also, because the algorithm picks each set at most ones and picks the most cost-effective set

in every iteration. So, since the algorithm picks each set at most once and picks the most cost-

effective set in every iteration, we have you know price of e1 is less than equal to price of e2 less

than equal to dot price of ere. So, price of an element is a non-decreasing as more of its

requirements are fulfilled.

Now we will analyse this algorithm using dual fitting. What is the first step? The first step is to

come up with a dual assignment which may be infeasible but which gives a bound on opt.

(Refer Slide Time: 12:31)

So, for that so what is the dual linear program? So, let us recall or let us write the linear

programs. You know minimize summation S in curl is c (s) xs and then subject to look at all the

elements for every element e in all sets which contains e. Among all those sets re number of them

should be picked this is for all e∈ U and xs in between 0 and 1 so this is the ILP formulation.

Now let us it minimizes c (s) xs is in curl S subject to this constraint is there that s∈ S xs is

greater than equal to re for all e∈ U and xs in between 0 and 1 for all s∈ S. Now here you know

because each element needs to be covered more than once we cannot simply drop the constrained

xs is less than equal to 1. The minimum solution means if we simply drop xs is less than equal to

1 the best solution may pick more than one copy of xs of an element s of a set S.

So, that is why we need both the constraints and now to write it in the normal form what we need

to write is in the standard form that xs is greater than equal to - x is greater than equal to – 1.

Because in the normal form I need to write the constraints in the standard form. I need to write

the constraint is greater than equal to form and xs is greater than equal to 0. So, this is the LP, the

primal LP.

(Refer Slide Time: 15:52)

Now let us write its dual maximize now we have more constraints. So, I need to multiply these

constraints for every e∈ U with a variable called ye and suppose for each s I have a constraint -

x is greater than equal to 1 this is multiplied with zs. So, the right hand side becomes summation

∑ yere−∑ zs subject to you know I have the coefficient for every xs.

And the coefficient for xs is ∑ yere−∑ zs. This is less than equal to c(s) for all s∈ S. Of

course, we have ye greater than equal to 0 and z is greater than equal to 0. This is for all e∈ U is

for all s∈ S so this is the dual. So, the first step of dual fitting is to find a dual assignment which

sort of matches which gives a lower bound on ALG which gives an upper bound on ALG.

So, ALG is less than equal to something but often it will be equality. So, what should we set? We

set ye to be equal to α e which is just price of (e , re) and zs also we said this is for all e∈ U and

zs=β s which is summation e covered by S in the algorithm. That means what? That means in the

algorithm we algorithm picks this zs to cover certain copy of the algorithm. So, when S is peaked

that means then e was alive.

Summation you know price of (e , re) - price of (e , je) where S covers e for the j e th time if S is

not picked by the algorithm. This if S is picked otherwise if S is not picked by the algorithm,

then we set zs=β s=0. So, first we need to show that the dual objective with this setting of dual

variables how does it connect to ALG.

(Refer Slide Time: 20:30)

So, no summation re αe, e in U minus the zs if S is not picked is zero so this sum is over. The set

which is picked by the algorithm - βs, s∈ S this is e∈ U re times price of e, re this minus you

know S picked by algorithm. This is price of (e , re) - price of (e , je). Now because this is a valid

solution there are already many sets which picks e and hence this term price of (e , re) gets

cancelled with this and this is what we have is ∑∑ price (e , j) this is nothing but ALG.

So, the first part is to show that ALG is at most the dual objective function but this is not a valid

dual solution. So, we define ŷe to be
α e
H n

 and ẑs=
β s
H n

.

(Refer Slide Time: 23:12)

Next, we claim that ŷe e∈ U ẑs s∈ S is a dual feasible solution. Proof, so what are the dual

constraints? For each set I have a constraint so let s∈ S be any set containing K elements number

the elements in the order they stopped being alive. So, let S={e1 ,... , ek } that means element e1 is

the first one to have stopped being alive followed by e2 and so on. Now two cases, first case one

algorithm does not pick S.

Then what we are done is Z is zero first of all let us see what are the elements there. A price of

(ei , re i) you know when re i the re i copy of the last copy of e i is picked this set is still available to

cover it at the cost of C (S) by k - i + 1 because e i+1 ,... , ek those elements are alive. So, at this

price this set is available to cover them so and we pick the most cost-effective set. So, price of e i

is less than equal to this. Now let us see.

So, what are the constraints? Summation yer e so summation. So, what is summation ŷe in S -

z (s)? I need to show this is less than equal to C (S)−z(S). Now summation this is 1 i = 1 to k

because it has k elements price. Now what is ŷe?
α e

H n

 and what is α e? α e is price of (e , re); this is

price of (ei , re i)
1
H n

 and - 0. But price is this so this is less than equal to
1
H n

 ∑i=1

k C(S)
k−i+1

. So,

this is C S H k by H n which is less than equal to C S. So, the constraints are satisfied when S is

not picked.

(Refer Slide Time: 28:02)

Similarly, you can check it that it can be verified that in the other case when S is picked the dual

constraint is also satisfied. So, this shows that this is a dual feasible solution. So, what? So, OPT

is greater than equal to the dual objective function at this value. So, what is this? This is the

∑e∈U
re ŷe –∑s∈S

ẑ (s) and what is this? This is
1
H n

∑e∈U
re ye –∑s∈S

z(s).

But this is ALG this is
1
Hn

, this is
ALG
Hn

. So, we have
ALG
Hn

 this is less than equal to
ALG
OPT

 is less

than equal to H n. So, hence we have a Hn factor approximation algorithm. So, let us stop here for

today.

