Selected Topics in Algorithm
Prof. Palash Dey
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 48
Introduction to Linear Program (Continued)

Welcome. So, in the last class we have started studying linear program and we are doing some
basic background of preliminary of linear programs. We will continue that in this class also.

(Refer Slide Time: 00:42)

-Sl.“rlml _|'F:‘_‘"

e

|
¥
¢
'Hb.“ LI.‘| ® -

b
fulgect

[aylm -

[aglw +

S/

So, there is something called standard form of a linear program. It turns out that every linear

program can be written as this standard form. What is this form? This minimize b,x,+...+b x,
subject to linear constraints a, x,+...+a,, x,=b, and let us change this name c,...,cC,

a, x,+..+a,,x,=b,. So, a,, x,+...+a,, x,>b, and this variables x,,...,x, >0 .

So, this is the standard form and it turns out that every a linear program it could be a
maximization program or any other program can be converted into this sort of form with
equivalent or transformation. So, for example we can define x,=—x, and the —y, and so on so
with just this sort of linear transformation we can convert or write down any linear program into

this standard linear program.

And that is why this linear programming theory has been developed with respect to this standard
form. With respect to the standard form what is the dual linear program?

(Refer Slide Time: 03:38)

od v oy

So, again let us follow the same approach. We multiply first equation with y,, second equation
with y, and the m-th equation with y . So, we maximize b, y,+b, y,+...+b_ y, subject to, what
are the conditions that when I multiply these the coefficients of x, multiply and sum this m
equation the coefficient of x, should be less than equal to the coefficient of x, here. So, the

conditionis a,,y,+a,, y,+...+a,, y,<c, .

Similarly, a,, y,+a,y,+...+a,,,y,<c, so on the last one is a,, y,+a,,y,+...+a,, y,<c, and of
course y,,..., y,, this is greater than equal to 0.

(Refer Slide Time: 06:35)

L I Sl o I::-..J..*;h, 'I L:r!' L I:,:'n ; "-__ @
|kl 4 ':_dq.fl,h.l.:! p..ra 3 (,L.l-l)

ol }od dud fromba solditng
go(hiede) ¥ 0 "

1';.'?“-1'"]1' Yo
,,1 perdh J‘J “;

ortivad
e i

ks
Ha .i,_IL.. 1..." camilifone 2 sdafed.

fckows_wnkin:

Pund '--#"**"j_ :

¥ = w
gha %0

i_m]...il:"- ¥

Dud_tmphrade e ==

bk 3

Now we state an important result which is called complementary slackness. Complementary
slackness condition it gives us a certain criteria when a solution a feasible solution is an optimal
solution. So, by the way so this matrix this is called so this matrix if [write matrix A this is

called the coefficient matrix. So, let x that means (x,,...,x,) and y=(y,,..., y,,) be primal and

dual feasible solutions respectively.

Then both x and y are optimal solutions if and only if the following conditions are satisfied. So,
what are the conditions? We have two set of conditions one is primal complementary slackness
conditions. So, what are primal complementary slackness conditions? It is like it says for each

variable j from 1 to n primal as the variables x,...,x,, either x j 1s 0 or now notice that for each

variable x j there is a constraint in the dual.

And the primal complementary slackness condition says that either the variable is 0 or if the
variable is not 0 then the corresponding constraint inequality must hold with equality or

summation if X, is not equal to 0 the jth constraint corresponding to ¢ this constraint should hold

with equality. So, this is the primal complementary slackness conditions.

These conditions should be satisfied and the dual complementary slackness condition. This is
because you know that dual of dual program is primal what do you mean by that you convert this

dual program into standard form and then write a dual of it and it will be same as the primal

program. So, here also for each the variables are y 1 to y m for each i from 1 to m either y,=0 or

the ith constraint which is Zn_ a;x.=b,.
j=1 070 i

So, this is the complementary slackness condition, this will be use in our design of
approximation algorithms.

(Refer Slide Time: 13:49)
b we Livaar {,Um-ﬂ o J"J"‘;j ﬂff”'w'.)

;JJ,'*-‘HH?

! L & . [y |
ok ofn K& P e pile
= l-‘.ﬁd-'h-l.h.f -J-:*"‘jt-f _.L.u.,__

L' .,.;.1+Iﬂr‘| fa

r-ﬂ-, g fr in p,-f'l't.
[= o captnig
IJ T Pl "‘J';."“’ el v

F.-,..'u lee=

Lo) wil "
; ety Lavly
de, Hs A]

L
s T

+le s § LT

] Ay v

Vi nh b b

s ik -5{

Now what is the high-level idea of how to use linear programs in designing approximation

algorithms. So, there are two broad approaches, approach one often the optimization problem at
hand can be written as an equivalent integer linear program. Now what do you mean by that?
Integer linear program is a linear program which has a linear again like linear program it has a
set of variables and we have optimization function which is a linear function over the variables

and we have a linear set of constraints.

But the variables some of the variables can take only integer values. So, let us understand this
with an example. So, for that let us recall the vertex cover problem. For example, consider the
vertex cover problem. Recall in the vertex cover problem we are given a graph G and we are
looking for a vertex cover of minimum size. So, for that so the following integer linear program

captures the vertex cover problem. The set of variables is x, where v in set of vertices.

(Refer Slide Time: 18:08)

WE - -:un-rl-.'.h '

1-'1;.u1.4v',. _

Redned

L

So, for each vertex in the graph G we have a variable and the idea is that variable takes only 0 1
values either 0 or 1 and if we pick it in the vertex cover then we set the variable to be one. So, to
find the minimum size vertex cover we minimize summation X, v into G or the constraints
subject to you know for each edge, one of its vertices one of its endpoints must be picked. So,

that means x,+x,=>1.

For each edge so it I have m edges I have m number of constraints and the variables take value in
0, 1 and linear program variables take value in a real interval. But you know in integer linear
program variables can take a value only in integers so this is for all V into V[G]. So, this is a ILP
formulation of the vertex cover problem. So, it turns out that many optimization problems can be

written as an integer linear program.

Now what we do? But the integral linear program solving it is NP hard. Finding an optimal value
is NP hard we do not hope to have a polynomial time algorithm for integer linear programming
unless P = NP. However, integer linear programs is NP complete. So, what we do is that we relax
the integrality constraint. So, this is the ILP integral linear program. Now we relaxed it to an ILP.

What is the relaxation?

Everything is same except the variables instead of allowing them to take value only 0 and 1, we

allow them to take any real value in between 0 and 1. Minimize Zv x, subject to for each

eV|[G]
edge e={u,v}, x,+x,>1 and for each vertex v€V[G], x, is in between 0 and 1.

(Refer Slide Time: 22:25)

He |"__J Ll

lal Qe -7 § THTT 2 ap7

H Hha {":'t"w-ﬂ-]l. T"-‘ W & .LU Ly mie d e OTT,
Hi=ts ;
! Huta Hht

o e
budioad = 37
ke & shin= an
: sk
foldia

TR s

P
aeHiL [AL8

bt

l-'-:'a-f_'il‘"‘jl

-.J:-,Tw-! olsden

ipdien bl et
T qlerdon |

Now clearly because the search space is more the search space is a superset for integer for linear
program compared to the integer program, we clearly have LP OPT is less than equal to ILP
OPT. But ILP OPT is nothing but OPT because ILP is a equivalent formulation of the given
optimization problem. So, using this framework we get the lower bound that we are looking for.
Hence this framework gives lower bound on OPT which is often the first step in any design of

approximation algorithm.

So, next what to what I have then you know we solve LP. So, idea is solve LP in polynomial
time that can often be done because linear programming is NP every linear program can be
solved in polynomial time that means an optimal solution can be found in polynomial time and
then this solution will have a fractional solution. So, however the solution will be fractional in

general. So, then what we do is that we apply in something what is called rounding technique.

From this fractional solution we create a solution of the optimization problem. We create a
solution of ILP which will automatically give us a solution of the optimization problem but

which may not be the optimal solution. So, the final step is we round the fractional solution to

obtain an integral solution which in turn provides solution to the given optimization problem

instance provides approximate solution given optimization problem instance.

So, here in this approach you know the ratio between LP OPT and ILP OPT this is the lower
bound on these are bound on maximum approximation ratio possible. So, this is called integrality
gap.

(Refer Slide Time: 26:59)

“r
I

a 'mmll fe & r-.:':.h.ljr"' f-LE‘
ot T 4

TR O R e

h_rF-,.r_.Il 1 e

B - i N
.:.J---h“"“l' J:f'“‘ g

P osed b ek G e
.:'.Et_j.}a. &,

padgpr

. ._._.&'w.' *.,_I.,jn.i‘l'-.m .

™

)

i

4
Integrality gap is called supremum for all instances you know ILP OPT or opt of I by LP OPT

p

because we are using our LP OPT as the lower bound. So, this alpha this approach can provide
an approximation factor of at least alpha for minimization problems. This is for minimization
problems and the second approach is use this primal dual approach for designing or analysing

combinatorial algorithm.

So, approach 2, use LP and its dual LP to either analyse a combinatorial algorithm. An algorithm
is loosely speaking it is called combinatorial if it is does not solve a linear program to either
analyse a combinatorial algorithm or design combinatorial algorithm. So, in this approach we do
not directly solve linear program. So, in the next couple of lectures we will see design of

approximation algorithms using both the two approaches. Thank you.

