
Selected Topics in Algorithm
Prof. Palash Dey

Department of Computer Science and Engineering
Indian Institute of Technology- Kharagpur

Lecture - 45
Approximation Algorithm for Set Cover

Welcome. So in the last class we have seen a
3
2

 factor approximation algorithm for

metric TSP problem. So in today’s class we will see an approximation algorithm for

the set cover problem.

(Refer Slide Time: 00:44)

So today’s problem is set cover. So let us recall the problem statement input. A

universe U. A collection of, collection is equal to S1 ,…,Sm, a collection of subsets of

U. Output. A minimum number of sets S1
’ ,…,Sk

’ from this collection, which covers U.

That is ∪j=1
k S j

’=U , okay. So for this problem we will see a simple greedy algorithm

and we will see its analysis. So the algorithm.

(Refer Slide Time: 03:21)

Or let me present the algorithm here. A simple greedy algorithm. So it is a iterative

algorithm. So step 1. We build the solution iteratively. So initially I do not pick any

set while, sorry this is step two. In C I maintain the set of elements which are covered.

So while C≠U do this. Find the most, let me introduce the term cost effective set in

the current solution is, current solution let us call it T.

So in T we are putting sets one at a time. So here T also initialize it to empty set and

find the most cost effective set you know let us call that set X, X in cal S in the

current solution T. Let the cost effectiveness of X cost effectiveness of X be α . That

is α equal to, now we, so α equal to 1 by, so if I pick the set X it covers all elements,

but some elements are already covered.

So the cost effectiveness is the number of elements that is yet to be covered, the

number of new elements that is covered by the set X. So all the elements in C they are

covered. So X covered X ∖C these set of new elements. And the more number of new

elements that set covers it is more cost effective. So its cost is less. So most of cost

effective means whose cost is least.

That means least α . So you pick an X with least α , which is the cost effectiveness

and we set we put X in our solution T=T∪X , C=C∪X , these are the elements

covered, okay? And that is it and at the end this is step 3, step 4, step 5. Step 6 is

return T. So why this is a greedy algorithm? In every iteration, it picks a set which

covers as many new elements as possible.

Whichever set covers the highest number of elements which are still uncovered, those

sets are picked because those sets have the least α , least cost, okay. So that way this is

a greedy algorithm.

(Refer Slide Time: 09:26)

Clearly the algorithm runs in polynomial time, okay? So to analyze this, so now we

will prove that theorem. Let cardinality U be n. Then the greedy algorithm has an

approximation ratio at most H of n where H n equal to the harmonic series up to first n

term, 1+ 1
2
+...+ 1

n
, okay. So to prove that we will do a pricing technique. So proof by

pricing technique.

What is the pricing technique? So for each element in the universe we will set a price

in such a way that the sum of the price of all the elements is the number of sets

picked. So we will assign a price for every element in the universe U in such a way

that the sum of the prices, the sum of the prices of all the elements in U is the number

of sets output by the algorithm, okay. So what is the price?

So let e be an element in U which is first covered. That means the first time the

algorithm picks a set which contains this element e which is first covered in the i-th

iteration, okay. So suppose that means in the first i−1 iterations, the i−1 sets that the

algorithm picked, those sets does not contain e.

(Refer Slide Time: 15:21)

So we set okay, so and let the cost effectiveness of the set X picked in the i-th

iteration be α . Then we set price of e to be α . Now what are the new elements that

are covered in the i-th iteration? It is |X ∖C|. So the number of new elements covered

in the i-th iteration is 1 by α .

And if we set the price of each element to be α , so after i-th iteration the number of

sets picked has increased by one and the sum of the cost of the elements has also

increased by one. Because some of the, there are one by α elements whose prices

have been increased, have been set to 1 by α . So initially for the prices of all the

elements are initialized to zero and hence the price of all the elements in u are

initialized to zero in the beginning of the algorithm, okay.

And at that time no set is picked. So after every iteration of the algorithm, every

iteration of the greedy algorithm, we pick one set and we update the prices of the

newly covered elements in such a way that the sum of prices is same as the number of

sets picked. So after every iteration of the greedy algorithm the sum of prices of all

the elements in u is the same as the number of sets picked after i iterations which is i,

okay?

(Refer Slide Time: 19:55)

So next what we claim is that number the elements, number the elements of u in the

order they are covered by the greedy algorithm. Let e1 ,e2 ,…,em be the numbering, be

such a numbering. So what do we mean by that? Suppose in the first iteration, the

algorithm picks a set, which has five elements. So it covers five elements. So what are

the elements? Let us call those elements e1 ,e2 ,…,em.

Now those five elements can be, any one of them can be called e1 and any one is

called e2 and so on. Now in the next iteration, suppose the algorithm covers four

elements, four new elements. So then let us call, we will call those elements is 6, 7, 8,

9 and so on. So that is what we mean by numbering the elements of u in the order they

are covered by the greedy algorithm.

So then here is the lemma. Then we can bound the price because now the idea is ALG

is summation of prices and we bound the price of each element as a function of OPT.

So for, so this is the crucial lemma. For each k∈[n], price of k, price of ek is less than

equal to
OPT
n– k+1

.

Proof. First observe that in any iteration you know some elements are yet to be

covered and the algorithm covers that with OPT many number of sets, sorry the

optimal solution covers those elements with OPT many number of sets. So in every

iteration the optimal solution covers the still uncovered elements at a total cost of at

most OPT, okay?

So maybe all elements in the optimal set may not be required to cover the still

uncovered element after some iteration, but the cost is at most OPT. Therefore among

the optimal set of, optimal sets, among the sets in OPT, among the sets in OPT, there

must be, so look at the cost effectiveness of those sets in OPT. So there are okay, so

there must be to bound the cost effectiveness of every set in the OPT. So there must

be at least one set with cost effectiveness at most.

(Refer Slide Time: 26:06)

You know total OPT is the total cost and the number of elements remaining is u

minus, in the algorithm we are maintaining c, C is the set of elements covered till

now. So the number of elements, the set of elements still uncovered is u – c. This is

the number of elements remaining. So this is, okay. But so this is a set with cost

effectiveness at most this.

But this is you know
OPT
n– k+1

 because at when I am considering e k then at least that

the number of elements which are remaining to be, which are yet to be covered is the

at at least n – k + 1. Since, because this since |U ∖C| is greater than equal to n - k + 1.

Since cardinality C is less than equal to k – 1; k - 1 elements have been covered.

And to cover k we picked the most uncovered set, the most cost effective set. So price

of ek is less than equal to
OPT
n– k+1

, okay. So this concludes the proof of this lemma.

Now using this we can prove, so what is ALG? ALG is ∑k=1

n
price(ek) which is price

of ek is at most
OPT
n– k+1

. So this is OPT by reindexing. This is
1
k

, k equal to 1 to n.

This is H n times OPT. And H n is since Hn is less than equal to ln n so you have ALG

is less than equal to ln n times OPT.

(Refer Slide Time: 30:14)

So we have a ln n factor approximation algorithm for the set cover problem. So this

concludes the analysis of this approximation algorithm. Okay, so let us stop here for

today.

