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Welcome. So in the last class we have seen derandomization as a technique and we

will  continue  our  study  of  approximation  algorithm.  So  today  we  will  see  an

approximation algorithm for vertex cover.
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We have seen this vertex cover problem. We have shown that it is NP complete. We

have reduced from independent set.  So let  us recall  the problem definition, vertex

cover. So what is the input? Input is a graph G. What is output? Here now we are

dealing with decision problems,  sorry optimization version.  So output  is  compute

minimum vertex cover, okay. So recall what is a vertex cover.

A set say u subset of the vertex set of the graph is called vertex cover of G if every

edge e has at least one endpoint in U. We have seen that it is NP complete and hence

we  do  not  expect  to  have  a  polynomial  time  algorithm.  But  here  is  a  simple

approximation algorithm for vertex cover.
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Simple approximation algorithm. So first is compute a maximum matching which can

be  computed  in  polynomial  time  for  arbitrary  graph.  You  have  seen  Edmonds’

blossom algorithm. So compute maximum matching of the input graph G. Let it be M.

Let u be the set of all endpoints of M. So matching, let us recall what is matching. It is

a collection of edges sharing no endpoint.

So it is a matching looks like a collection of edges like this. And u be the set of all

endpoints. So these set of vertices and these set of vertices together forms U. That

means cardinality U is twice the cardinality of M, okay and then output U. So two

things, it outputs a set of vertices. First we need to prove that it is indeed a vertex

cover. That means for each edge at least one endpoint is there in u.

So first  claim,  the  algorithm above  is  a  vertex  cover  for  G.  So  it  is  a  proof  by

contradiction. Suppose not. Suppose U is not a vertex cover, not a vertex cover for G.

That means what? That means there exist an edge whose none of the endpoints belong

to U.
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Then there exists an edge e whose none of the endpoints belong to u. But then how

does the edge look like? You know suppose this is matching M and there is an edge

whose none of the endpoint belong to U. That means, this contradicts that this is a

maximum matching, M is  a maximum matching because but then  M∪e is also a

matching. This contradicts our assumption that M is a maximum matching.

Hence the output of the algorithm indeed forms a vertex cover of the graph. Now

what is the approximation ratio? So ALG is the size of the vertex cover output by the

algorithm.  This  is  cardinality  U,  this  is  twice  cardinality  M.  M  is  a  maximum

matching. Now we see that any optimal solution needs to cover at least these edges of

the matching M and hence at least pick one of the endpoints of each of the edge.

Hence the size of opt is greater than equal to M. This is twice opt because, this is

since any optimal solution or any vertex cover, any vertex cover including the optimal

one including the minimum must pick at least one end point of each edge of M, okay?

Hence we have ALG by opt is less than equal to 2.
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Hence the approximation ratio of our algorithm is 2. Is our analysis tight? That means

is our, is the approximation ratio of our algorithm is, here it shows is at most 2. So is

this analysis tight? That means, is it that the approximation ratio for algorithm is less

than 2 or we will show that no. This analysis is tight that means, this there exist an

instance where the output of the algorithm is twice the size of the minimum vertex

cover.

So for that consider a star graph. In a star graph, how does it look like? One spoke

vertex and there are lot of other vertices connected directly to it. In a star graph the

algorithm output two vertices but the size of a minimum vertex cover is 1. Hence the

approximation ratio is exactly 2. Hence the approximation ratio of our algorithm is 2,

okay. So good.

So next we consider our next optimization problem which is very popular which is

called  traveling  salesman  problem.  Traveling  salesman  problem.  What  is  this

problem? Input  a  complete  edge weighted  or  complete  undirected  edge weighted

graph. Output cycle of minimum total weight containing all vertices. Or it need not be

a cycle. More generally it will be a walk.

A walk of minimum total  weight containing all  the vertices.  Now this problem is

studied in many ways some variations. For example, sometimes we do not assume

that input graph is complete. In that case if the input graph is arbitrary edge weighted



we will assume that the weight of the missing edges are infinite or very large, okay. Is

the decision version of this problem NP complete?
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So the decision version of the problem can be shown to be NP complete by reducing

from what  is  called  Hamiltonian circuit  problem.  What  is  the input?  Unweighted

graph output. It is a division version. Let us, the problem itself is a division version,

decision problem. Does there exist, does there exist a cycle containing all the vertices

exactly one. We will use the fact that Hamiltonian circuit is NP complete.

And using this we will prove that traveling salesman problem is also NP complete. So

let me write, traveling salesman problem is of course the decision version where it

does  not  make  sense  for  optimization  version  of  a  problem  to  talk  about  NP

completeness, being NP complete. So what is the decision version?

That means, given a complete edge weighted graph and a target of target sum of

weight say t does there exist a walk covering all vertices such that the sum of the

weights of the edges is at most t. So proof. So of course, the decision version, okay.

So clearly I let you check that this is this belongs to NP. Clearly the problem belongs

to NP. To show to prove NP hardness we show Hamiltonian circuit.
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We show  let  me  write,  Hamiltonian  circuit  many  to  one  polynomial  time  curve

produces to traveling salesman, okay. So what is the thing? So let G be any instance

of Hamiltonian circuit. We consider G’ as follows. The vertex set is same and in G’

we have, G’ must be a complete graph and only weights we need to decide. Weight of

an edge e is 0 if this edge e is present in G and say w for some positive number w if e

does not belong to G.

Let me write some instead of w because w we are using for edges, let us call it λ . λ  is

greater than 0, okay? And for the decision version of the traveling salesman problem

we need to give a target cost. So target cost of walk is 0.
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So we claim that there exists a Hamiltonian circuit in G if and only if there exists a

tool of total cost 0. A walk containing all the vertices exactly once, okay. So of course

let c be a Hamiltonian circuit of G. Then the cost of c is 0 in G’. Hence the traveling

salesman instance is also a yes instance.

On the other hand, if there exists a tour, there exists a cycle in G’ of total cost cycle c’

in G’ of total cost 0, then by construction all the edges of c’ are present in G. Hence c’

forms a Hamiltonian circuit in G. Hence the Hamiltonian circuit instance is also yes

instance.  Now that  is  fine.  So this  shows that  that  traveling salesman problem is

incomplete, but it shows more.
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It shows that, so here is a very important corollary. For any computable function say

λ , so λ  cannot be a constant. It could be n , log n , n2 ,2n, 2 to the power you know any

computable  function  λ  there  does  not  exist  a  polynomial  time  λ  approximation

algorithm for TSP, is a popular short form of traveling salesman problem unless P

equal to NP.

Proof.  So  suppose  there  exists  such  an  algorithm.  Suppose,  there  exists  such  an

algorithm, then we can use this algorithm. So then in the reduced instance then the

algorithm must output a Hamiltonian circuit in the above reduced instance, reduced

instance of TSP using λ . So let us use some other notation λ∗ , λ  equal to λ
∗

2
.



Why? Because what is the value of the instance if value of the optimal solution is 0 if

there exist a Hamiltonian circuit? So this we are talking about this reduced instance in

this proof. And if the yeah, so it is not λ∗ by 2 it is λ∗ times 2, two times λ∗. See, if

there exist a Hamiltonian circuit, then the value of the optimal solution is 0.

And if it is optimal solution is 0, it actually does not matter. The value of the optimal

solution is 0, then ALG because ALG must be less than equal to approximation ratio

times opt. Now if opt is 0, that means ALG also must be 0 for this approximation ratio

to hold. Hence ALG also must be 0 and this is possible only if the algorithm outputs

the Hamiltonian circuit.

But then we have P = NP. So what we have seen is that for TSP, we do not expect to

have any kind of approximation algorithm however bad the approximation ratio could

be, will not expect to have an approximation algorithm for TSP. So in next lectures

what we will see we will make some realistic assumption on TSP and that will allow

us to have an approximation algorithm for TSP. Okay. So let us stop here.


