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Lecture - 41
Derandomization

In the last class we have seen two randomized approximation algorithms. In this class,

we will derandomize those algorithms.
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 Derandomization.  So derandomization  is  an umbrella  technique  to  randomize  an

approximation algorithm. So it is not just one technique. So we will see one kind of

derandomization using conditional expectation. So derandomization using conditional

expectation for derandomization.  For that we take the example of MAX3SAT. So

derandomized approximation algorithm for MAX3SAT.

So let us recall we denoted X the random variable which is the number of clauses

satisfied by your randomized algorithm. And for each clause, we had an indicator

random variable X j indicating whether to satisfied or not. And we had X is ∑ j=1

m
X j.

And what is expectation of X? We computed it, it was 
7m
8

. Now this is expectation of

X can be written as you know there are n variables.



So  we  are  setting  each  variable  with  true  with  probability  half  and  false  with

probability half.  This is expectation,  let  us take one variable say  X1 is  true times

probability that  X1 is true plus expectation of X when  X1 is false times probability

that X1 is false. So that means now each is half each of these probability is half. So

this is expectation of X given X1 equal to true plus expectation of X given X1 equal to

false by 2.

So hence 
7m
8

 expectation of X is the average of these two conditional expectations.

And this is 
7m
8

.
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That means either expectation of X given X1 is true is greater than equal to  
7m
8

 or

expectation of X given X1 equal to false is greater than or equal to 
7m
8

 or of course

both.  Now here we observe that computing this expectation is easy. So there is a

crucial  observation.  This  technique  can  be  is  useful  only  if  these  conditional

expectations can be computed easily.

So observe that expectation of X given X1 equal to true and expectation of X given X1

equal to false can be computed easily, okay? So what is the idea, let us see. So if X1 is

true, so some set of clauses are satisfied. So let s see how it is computed for all X j for



all j in m if this clause C j contains you know X1 as literal. So we are discussing how

to compute say expectation of X given X1 equal to true.

Let  me  write,  to  compute  expectation  of  X  given  X1 equal  to  true,  will  do  the

following. So all those clauses which contain X1 as a literal it is satisfied because X1

is true. So expectation of X j is 1. If  C j contains X̄1 as literal then it is not satisfied.

Then this particular variable does not satisfy and the clause C j could be satisfied using

only the remaining two literals.

So expectation of X j or let me write here X j given X1 is true is 1. Expectation of X j in

this case given  X1 is true is now the probability that it  is not satisfied is both the

remaining two literals are also turn out to be false that happens with probability 
1
4

. So

with probability 1−1
4

 this is satisfied. So this is 
3
4

.

Otherwise you know if C j does not contain X1 or X̄1 then expectation of X j given X1

equal to true remains same. So now for each clause, we now know the expectation of

X j given the event that X1 equal to true. And now we add all these things and hence

that sum.
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So because expectation of X given X1 equal to true is what? This is sum of sum over j

equal to 1 to m expectation of X j given X1 equal to true and we have easily computed

what are these individual expectations and we add them and this way we can compute

expectation of X given X1 equal to true. Similarly expectation of X given X1 equal to

false  can  be  computed  in  exactly  the  same  manner,  is  also  j  equal  to  1  to  m

expectation of X j given X1 equal to false.

So what is our derandomized algorithm? Now for each variable i equal to 1 to n if

expectation of X given  X1 equal to true is greater than expectation of X given  X1

equal  to  false  then set  X1 to  be true else  set  X1 to  be false.  Remove all  clauses

satisfied, okay?
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So you know, claim the algorithm satisfies at least 
7m
8

 clauses, okay? Proof, so it is

by loop invariant. So in i-th iteration we have expectation of X given an i-th iteration

or if we write at the start of i-th iteration or after i-th iteration. After i-th iteration

x1 , .. , x i are set. So x1 , .. , x i whichever it is set, this is greater than equal to 
7m
8

. This is

the claim. So this is for all i equal to 0 to n, okay?

So clearly this is, clearly this holds for i equal to 0 since expectation of X that we

have computed we have already seen this is  
7m
8

.  So this is a proof by induction.



Suppose it is true for i, then I will show for i + 1. That is we have expectation of X

given x1 ,…, x i. This notation means that in whichever way x1 ,…, x i have been set by

the algorithm. So this is greater than equal to 
7m
8

.

To show this is the inductive step expectation of X given  x1 ,…, x i+1, this is greater

than equal to 
7m
8

.
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So  what  is  the  expectation  of  X  given  x1 ,…, x i,  this  is  expectation  of  X  given

x1 ,…, x i+1 is  set  to  true  times  probability,  sorry  this  is  write  x i+1,  this  is  max of

expectation of X of x1 ,…, x i. They have been set before and x i+1 is set to true. That is

what the algorithm does. In the i + 1-th iteration it sets x i+1 to true and false and see

whichever is more, whichever expectation is more.

That way it is set. So this expectation of X given x1 ,…, x i and then x i+1 is false. So

this is you know because expectation of X given  x1,…, x i+1 is the average of these

two expectations. So this is less than equal to or is equal to sorry, equal to or this is

greater than equal to, this max is greater than equal to expectation of X given x1 ,…, x i

.



Because expectation of X given  x1,…, x i is the average of expectation of X given

x1 ,…, x i+1 set  to  true  and  expectation  of  X given  x1 ,…, x i+1 is  set  to  false.  It  is

expectation of X given x1,…, x i is the average of these above two things. And so it is

max, max is greater than equal to this. But this is, by inductive hypothesis this is

greater than equal to 
7m
8

. This is by inductive hypothesis.

This proves the claim. Hence we have expectation of X given x1 ,…, xn is greater than

equal to  
7m
8

. But what is X so X capital X expectation of X given  x1 ,…, xn that

means all the variables has been set and this is one number and this is nothing but

ALG. This is but however ALG the number of clauses satisfied by the algorithm is

nothing but expectation of X given x1 ,…, xn.

Hence, we have ALG is greater than equal to  
7m
8

. Hence, we have a deterministic

algorithm. You know in this algorithm, there is no randomness involved. We are not

making any random coin tosses. We are comparing this to expectations using this

framework and we make deterministic choices.
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Hence  we  have  a  deterministic  algorithm  for  the  MAX3SAT  problem  with

approximation ratio at least 
7
8

. You know using the same approach we can see that for

MAX3SAT  set  problem  where  each  clause  has  key  min  literals  for  MAXkSAT



problem we have a randomized algorithm with expected approximation ratio at least

7
8

.

Again  this  algorithm  can  similarly  be  derandomized  to  obtain  a  deterministic

algorithm for, sorry for MAXkCut this approximation ratio is (1−12)
k

. For MAXkCut

MAXkSAT with approximation ratio at least  (1−12)
k

. So I encourage you to apply

the same method of conditional expectation to derandomize our randomized algorithm

for MAXCut.
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So let me write here. The same method of conditional expectation can be used to

derandomize or randomized algorithm for weighted MAXCut problem. And the idea

is exactly same, you know here there also you look at x was the expected size of the

cut and there also expectation of X can be written as expectation of X given a vertex v

you know this vertex v this belongs to this random cut that we are constructing.

v belongs to u times probability that v belongs to u plus expectation of X given v does

not belong to u times probability that v does not belong to u. And the same framework

applies because these probabilities are half and even if actually these probabilities are

not half because these probabilities sum to 1. The main idea is expectation of X is a

weighted average. So this half is not necessary.



Any such probabilities would have worked. weighted average of expectation of X

given v in u and expectation of X given v does not belong to u. And hence, in each

step we iterate over vertex and put v∈U , if expectation of X given v∈U  is more than

expectation of X given v∉U .

So in each step we are putting we are getting a or making a decision which increases

which always retain that expectation of X given the current whatever variables are set

this at least half, this greater than equal to expectation of X. And expectation of X is

greater than equal to sum of weights of the edges by 2.

And hence, so we maintain expectation of X given this setting v1 ,…,v i, this is always

greater than equal to expectation of X which is greater than equal to half of the sum of

weights okay, E [G ]. And here again one important thing to check is that these things

can  be  computed  in  polynomial  time.  So  this  conditional  expectations  can  be

computed in polynomial time, okay.

And hence again the same approach can be used so I will let you fill up the details. So

let us stop here today.


