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NP – Completeness of Subset Sum and Knapsack

Welcome, so from the last couple of lectures we have been seeing many NP complete reductions

and we have seen Boolean satisfiability problem and various graph problems and today we will

see a new problem a numerical problem and show that it is also NP complete. 
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So, today's problem is subset sum but before that let us summarize what are the reductions we

have seen so far, we have seen reduction from CNF-SAT to 3SAT to independent set to clique

and we have also seen from 3SAT to 3 colour ability 3 colouring. So, today we see a reduction

showing that the subset sum problem is NP complete or NP hard. So, what is the problem in

problem formally? Input and we have also seen from independent set to vertex covered.

For subset sum the input is a set A={a1 ,…,an} of integers and another integer say T, output does

there exist a subset B of A such that the sum of integers in B sums to exactly T. So, this is the

subset sum problem and we will show today that this NP complete theorem. The subset some

problem is NP complete.
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Proof, again if the instance is a YES instance a subset whose sum whose elements sum up to T

can itself act as a proof for the easiness of the instance. Hence membership in NP is clear, subset

B of A whose elements sum to T is  a proof that  an instance is  a YES instance.  Hence the

problem belongs to the complexity class NP. To prove NP hardness, we exhibit many to one

polynomial time card production from vertex covered. 

To prove NP hardness, we show that vertex cover many to one polynomial time cover produces

two, subset sum. So, let I need to start with an arbitrary instance of vertex cover and convert it to

an equivalent instance of subset sum. Let (G ,k ) be an arbitrary instance of vertex cover. So, let

us  level  the  edges  of  G arbitrarily  with  the  integers  from 0  to  say  |E|−1.  Let  us  suppose

cardinality of E is m, so that is it is like m - 1. 
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Now  we  have  the  following,  we  considered  the  following  instance  of  subset  sum.  So,  the

instance contains a set of numbers and a target sum. So, what are the set of numbers? So, this set

our set A contains b i=4
i for each integer i∈{0 ,1 ,2 ,…,m−1}. So, this is the set using which we

have levelled the edges and for each such level of the edge I have an integer which is 4 i. 

And for each vertex v∈V , A contains a number a v which is 4m, m is the number of edges in the

graph plus summation 4 i. Where i∈Δ(v) where Δ(v ) is the set of edges incident on v. So, these

are the numbers and the target sum T is k 4m+2∑i=1

m−1
4 i. So, this is the subset some instance. 

We now claim that two instances are equivalent but before proving that there is there exist a

pictorial view of these numbers.
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That means if you write it in base 4 form then this is the m-th number m - 1 1 0, so for each i I

have a number which is 4 i that means I have a number which is all these bits are 0 this and this is

1, this is 1 0 and so on here 1. So, these are you know this b i’s b0, b1 , b2 ,…,bm and then a v is for

each V you know some coordinates  are  1.  So,  if  the  mth  edge  belongs to  a  vertex  whose

corresponding this is a v if m-th edge is incident on v. 

Then m-th coordinate is one this is also 1 m - 1 if it does not incident then it is 0 and so on.  So,

there is a bit vector a b can also be thought of as a bit vector of the of the edges indexed by edges

which edges are incident on a v. So, there is a bit vector of Δ(v ), so this for each vertex I have

such thing. And I need to select you know k vertices exactly k vertices and that is when this sum

here I will have k here k many ones here. 

And you know each edge will be covered. So, all the edges will be picked you know and if each

if this k vertices k many. If for an edge if both endpoints are in are on this k size set then I do not

need to pick the corresponding edge from here on top b0 ,…,bm−1. On the other hand, if at least

one endpoint is incident on this, k vertices then I can pick the edge from top and that way you

know in that column I will get 2, that is the target. 

Now in each column for the edge I need to get 2, so that is the high level idea of the equivalence.

So, now let us formally prove it. So, now to show the equivalence let so suppose that the vertex



cover instance is the YES instance and let W subset of V is vertex covered of G and size of W is

exactly k. If it is YES instance that means there exist a vertex cover of size at most k if it is less

than k, W is a vertex cover less than k. 

I can always add more vertices to it to ensure that the size of W is exactly k, we can assume

without loss of generality that k is less than equal to n number of vertices.
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So, now consider the following subset. The following subset B equal to you know pick all those

vertices pick all those numbers correspond to the vertices which are in the vertex cover and those

integers whose exactly 1 end point is belongs to W. The edge i has exactly 1 end point belonging

to W. So, now if I sum the integers in B, so you can see from this picture you know this mth

column has k many ones. 

So, this will be k times 4 to the power in plus, now each other column you know if it has exactly

two ones. So, this is k 4m+2∑i=1

m−1
4 i which is exactly T. Hence, we have proved that if the vertex

cover instance is at YES instance that means that implies that the subset sum instance is a YES

instance.  Now for  the  other  direction,  let  B  be  a  subset  of  A  such  that  sum of  x  in  B  is

k 4m+2∑i=1

m−1
4 i. 



Now again think of this as this number in base 4, so what is this B? This B is a subset of A, it

contains some sub some numbers from the set a v and some numbers from b i. So, this must be

equal to v in W a v + i in some edges some set of edges b i, this is how it should look like. 
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Now the crucial thing to observe that looking at this numbers in base 4, there are no carries in the

first m digits, why? Because for each i, come back here these numbers for in each column how

many 1s are there, there are 3 1s in the first m - 1 column 0 to m - 1 in each column there are

exactly three 1s for every i. In  b i that number has a 1 there and this edge i is incident on two

vertices. So, those two vertices will have one there. 

So, each column has exactly three ones for each i the column i or let me write this way for each i,

there are exactly three numbers with ith digit being 1. So, there cannot be any carry and hence

for then for 4 to the power m, this coefficient for it to be k the number cardinality of W should be

k. Hence cardinal will be W because there is no carry should be equal to k. Now we claim that W

is a vertex cover for G, so it is a proof by contradiction. 

So, suppose not, then there exist an edge let us call it edge j∈{0 ,…,m−1}, we have labeled the

edges from 0 to m - 1. So, there is an edge whose both endpoints does not belong to does not

belong to W but then how come the j-th, how come the j-th column has two ones because now

look at this sum each column must have two ones and even if I pick b j you know the other two



numbers where the j-th is one those are not picked but then however then the j-th digit of the sum

is not 2 which is a contradiction.
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So,  hence  W forms  a  vertex  covered  for  G,  hence  these  two  instances  are  equivalent  this

concludes the proof that the subset sum problem is NP complete. Now using subset sum we can

we prove another problem, another popular problem which is called the knapsack problem to be

NP complete. So, what is the problem instance? The input is set  of objects, an objects with

weights a set of the weights the integers are set of weights W={W 1 ,…,W n}, so this is one set.

So, let us call it sets W these are the weights and profit P={p1 ,…, pn} and integer integers b and

this is the back size and T targeted profit. Output you know does there exist subset I of 1 to n

such that  ∑i∈I
W i≤b, their profit  ∑i∈I

pi≥T . So, again this problem is NP complete and this

can be easily shown by a reduction from subset sum. 

So, theorem knapsack is NP complete, again membership is obvious any subset of items which

with two sum of weights is at most pn sum of profit is at least T is a proof for Yes. So, knapsack

clearly belongs to NP, we now show that subset sum many to one Karp reduces two knapsack. 
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So, let  A={a1 ,…,an},  t  be an arbitrary instance of subset  sum, then consider the following

instance of knapsack. What is that instance? That W weights is A and profit is also A and but

back size is t and target t prime is also t. Now it is easy to see that if there exist of B subset of A

such that ∑x∈B
x is t, then you know the index I which is i in n such that a i is in B, then for this

we have ∑i∈B
wi=b and ∑i∈I

pi=t.

Hence if the subset sum instance is the YES instance, then knapsack is a YES instance, on the

other hand if there exists I subset of n such that ∑i∈I
wi is less than equal to b and ∑i∈I

pi≥t.

We have  ∑i∈I
ai is  ∑i∈I

wi this  is  less than equal to b but b's value is t  this  t ’ and this is

∑i∈I
ai≥t

' but t ’ is also t.

So, hence all this i have a chain of inequalities where both endpoints are same that means ∑i∈I
ai

must be equal to t all must be equal to t and hence the subset sum instance must be a YES

instance which concludes the proof. So, we will stop here today.


