
Selected Topics in Algorithm
Prof. Palash Dey

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 33
NP – Completeness of 3SAT

Welcome so in the last class we have discussed reductions namely Turing reduction and Karp

reductions. Today we will see lots of examples of these reductions. 

(Refer Slide Time: 00:38)

So, today's topic is NP complete reductions NP hardness, NP completeness and reductions. So,

we have defined NP hardness informally that problems as hard as NP but now we define once

now we have learned reductions. So, formally let us define NP hardness a problem Π  is called

NP hard if every problem Π ' in NP reduces to or Karp reduces in polynomial time to Π  that is

Π ' Karp reduces in polynomial time to Π . 

And this is what do we mean by Π  is at least as hard as Π '. Informally Π  is at least as hard as

every  problem in  NP  hence.  That  is  why  the  by  the  definition  and  hence  if  there  exist  a

polynomial time algorithm for any NP not problem that means P = NP. 

(Refer Slide Time: 04:20)



Hence if there exists polynomial time algorithm for any NP hard problem then we have P = NP

all problems in NP can be solved in polynomial time. Now to show that some problem is NP

hard then it is enough to show some problems called Π  because in here it is enough to show a

reduction from and already known NP hard problem Π '. So, whenever we say reduction without

adding any adjective it always means Karp reduction it is the defective standard reduction that is

followed in computer science. 

And there are some reasons, for example Turing reductions this complexity classes NP and co

NP they are not  closed on the Turing reduction.  That means satisfiability Turing reduces to

unsatisfiability but serviceability is a canonical NP problem and unsatisfiability is a canonical co

NP problem. So, but this can this is not the case for Turing for Karp reductions you know the

complexity classes NP and co NP they are closed under polynomial time Karp reductions. 

So, to make the exposition easy we will drop the word Karp from the time being from now on.

Now to show that you know some problem is NP hard all we need to show is that pick NP hard

another NP hard problem say Π ' and show a reduction from Π ' that is show that Π ' is at least as

hard as Π  and this works because of transitivity. So, here is another observation easy observation

let Π 1 ,Π 2 , Π 3 are three decision problems. 



Then  Π 1 polynomial time Karp reduces to  Π 2 and  Π 2 polynomial time Karp reduces to  Π 3

implies Π 1 polynomial time Karp reduces to Π 3. So, hence if all problems can be reduced to pi

prime that means and  Π ' reduces to pi hence all problem in NP reduces to  Π  and hence this

establishes that this is Π  is NP hard. Now what is NP completeness? NP complete a problem Π

is called NP complete if Π  belongs to NP that is one and second is Π  is NP hard. 

That means if there exists a polynomial team algorithm for Π  then there exists a polynomial time

algorithm for every problem in NP. So, in some sense NP complete problems are the hardest

problems in the class NP. 

(Refer Slide Time: 10:15)

So, so informally speaking NP complete problems are the hardest problems in NP and proving to

prove some problem is NP complete all you need to show is that it belongs to NP that means if

the  instance  then  it  can  be  verified  by  an  efficient  algorithm  using  a  certificate  using  a

polynomial time polynomial size certificate that is one. And the second is it is NP hard that

means the there exists a reduction from one NP hard problem to this problem. 

But this boils down to the fundamental question that how we prove the first problem to be NP

hard. That means that we need to show from the definition that all problems in NP, reduces in

polynomial time to that problem. So, using that definition we need to show the first problem and



that  is  the Cook Levin theorem they showed that  all  problems in P in  NP polynomial  time

reduces to SAT satisfiability. 

So, they showed that satisfiability also called SAT is NP complete who will not prove this the

proof of this result is out of scope of this course and it is not in the it is not superbly important

for our material but I would recommend all of you to look at this proof this is an interesting nice

proof and not difficult.  You need to understand the NP will  and the definition and proof is

intuitive enough. But we will not prove this. 

So, what we will prove is that we will use this information that SAT is NP complete and using

this we prove many NP complete many other NP complete problems. We see many other NP

complete problems and we will see reductions. So, what is the SAT clause? What is the input of

this of satisfiability? It is one possibility is arbitrary Boolean formula but another one is called

CNF-SAT. So, CNF-SAT is also NP complete and in CNF-SAT. 

We will also use the fact that CNF-SAT is NP complete and now from here on we will build up

reductions and show that many other problems are NP complete so, input for CNF-SAT we are

given input is m clauses in conjunctive normal form over in variables output again it should be a

decision problem is the formula satisfiable. So, we will  assume that this is known to be NP

complete. 

So, let me write it as a fact CNF-SAT is NP complete and using this, we prove that three CNF-

SAT is also NP complete. 

(Refer Slide Time: 15:30)



So, what is three CNF-SAT, is also abbreviated as 3SAT sometime is commonly abbreviated as

3SAT the input is m clauses over n variables where each clause is logical or of at most three

literals and the output is question is does there exist an assignment of the variables that satisfy all

the m clauses.  So,  what  we will  show now is  that  let  me write  it  as theorem 3SAT is NP

complete. 

Proof, so by definition NP completeness has two parts one is membership in NP and another is

NP hardness. So, does 3SAT belong to NP of course yes because and satisfying assignment

could serve as a certificate. So, 3SAT clearly belongs to the complexity class NP using satisfying

assignment using as the certificate as the polynomial size certificate. 

(Refer Slide Time: 19:49)



Now to show NP hardness we exhibit a reduction from three CNF-SAT. To prove NP hardness,

we show that 3 not 3 CNF-SAT polynomial time Karp reduces we are dropping this writing Karp

every time polynomial time Karp reduces to 3SAT so, for that what I need to do? I need to

convert an instance of CNF-SAT to an equivalence instance of 3SAT and that should be done in

polynomial time in such a way that you know X is a YES instance X is satisfiable if and only if

A (x ) is a YES instance that means A (x ) is satisfiable. 

So, the only difference between CNF-SAT and 3SAT is that each CNF clause may not have may

not involve three number of variables it can contain less number of variables or more than three

variables. So, how to convert that? So, suppose so let C1 , ... ,Cm be the clauses of CNF-SAT now

for each clause j∈ {1 ,... ,m } in a couple of cases if C j is just involves one literal that is C j has

one literal. 

So, we will convert each clause into a bunch of 3SAT clauses so that you know this clause C j is

satisfiable if and only if all of them are satisfiable, that is the idea. So,  C j if it  is l then we

introduce or add like this say add this clauses (l∨z1∨z2)∧(l∨ z̄1∨z2)∧(l∨z1∨ z̄2)∧(l∨z̄1∨ z̄2).

Let us call this if clearly C j is satisfied if and only if f is satisfied. 

So, let us verify this so if  C j is satisfied that means l is set to true then f is satisfied because l

appears in each clause. So, f is satisfied. On the other hand, if f is satisfied, we claim that  C j



must be satisfied so suppose not. Suppose C j is not satisfied that means l must be false. Now you

ask how do z1 and z2 what are their setting what are the assignment now for each assignment at

least one of these.

Both of them should be false and that particular clause will be false because l is also false. So, it

follows that if C j is false then f is also false. Among these four clauses exactly one of the clause

will be false. Hence it is not satisfied. The next one is if C j involves two variables two literals

and this  temporary variable  z1 , z2,  they  appear  nowhere  else  they  appear  only  in  these  four

clauses. 

So, if  C j is  l1∨l2 what we do is that add  f=( l1∨l2∨z1)∧( l1∨l2∨ z̄1). Now here again if  C j is

satisfied if and only if f is satisfied. Because its  C j is so let us see if  C j is satisfied then l1∨l2

turns evaluates to true if l1∨l2 relates to true then both the clauses of f evaluates to true. On the

other hand, if l1∨l2 is false that means if C j is false then if z is false then the first clause turns out

to be false and if z is true z1 is true. 

The second clause turns out to be evaluates to false. Hence at least one of the clauses becomes

false and hence f turns out to be false. 

(Refer Slide Time: 26:58)



If  C j involves  three literals,  we do not  have need to  do anything because in  3SAT we are

supposed to have three literals  so just  take that  literal  and put  it  in the 3SAT instance.  So,

suppose C j involves more literals C j involves say k literals l1∨l2∨...∨lk . So, what we do is that

we introduce a clauses like this l1∨l2 and no z1 next and ( z̄1∨l3∨z2)∧( z̄2∨l4∨z3) and so on this

continues till the last one that ¯zk−2∨lk∨zk−1. 

Now again here also we can check that you know C j is true for any assignment of the variables if

and only if f is true. Now here these things are a little non trivial to verify so suppose C j is true

so let us prove this so suppose C j is true then one of these literals will be true suppose you know

for if l1 is true so if it is true and you know suppose li ,i∈[k ], li is true. Then look at where does li

is in li it looks like this if i is greater than greater than equal to 3. 

Then this is looks like i - 2 or z i−1 that is how it looks like if i is greater than equal to 3. Then you

set  z i−2 to be false and z i−1 to be false and percolate this way that means you know z i−3 to be

means all these are false up to this is z1. So, z1 is true and from z2 to this much is false it is like

and here sorry if li true then z i−2 to be true this is true from z1 to z i−2 make it true and from z i−1 to

zk−1 set it false. 

On the other hand, if i is 2, 1 or 2 then set z1 if i is 2 then set z1 everything to be false z1 to zk−2 to

be false. Similarly in the other way suppose f is true A folds true then you see that you know all

of them all z1 to zm no if all of them are false then either l1∨l2 is true and that means C j is true.

On the other hand, if there exist at least one of them true so what is the first one which is true

from z1 you will search from z1 and see which one is the first one to be true. 

And if z i−2 to be the last one to be true which is the last one to be true if z i−2 is the last one to be

true then li must be true. 

(Refer Slide Time: 32:37)



So, we have this that f is true if and only if z i−2 is true and does this run in polynomial time. So,

the very number of clauses number of 3SAT clauses how many. You know each one we for each

clause we involve at most the number of neutrals involved in that clause. So, the number of

clauses is at most there are m clauses and each clause can have at most n literals so number of

clauses in 3SAT instances at most m times n. 

And number of variables is also the original n variables were there and, in each clause, we are

involving at most number of literals involved minus 2 clauses. That means at most the number of

literals clauses and the number of literals is at most n and there are m clauses so we are involving

at most you know m times n clauses a m times n variables. So, this reduction runs in polynomial

time. 

So, this concludes the proof. So, in the next class we will see some more examples of reductions.

Thank you.


