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Welcome, so, in the last class we have started NP completeness and this complexity class we will

continue that in this class. So, we have seen three main complexity classes P, NP and co-NP. 
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And we have seen that L belongs to NP if and only if L bar belongs to co-NP. Now what is their

relationship with P? So, we claim that this is also obvious that P is a subset of NP and P is a

subset of co-NP this is an observation. So, why? First prove that P is a subset of NP, for P to be a

subset of NP for instances of a problem. So, let Π be a problem in P now I need to show that Π

belongs to NP. 

That means for YES instances there should exist a polynomial verifier and a polynomial size

certificate which can verify that the instance indeed a YES instance. So, because Π is in P this

implies there exists and algorithm for Π. Let us call that A. Now we claim that use empty string

has the certificate and A as the poly time verifier, polynomial time verifier, A can simply solve

this problem an instance of Π and check whether the instance YES instance or NO instance. 



It does not need any certificate so this implies that Π is in NP. Similarly, Π is in co-NP because

the same thing the same algorithm A can verify in polynomial time that the input instance is

indeed a NO instance hence this algorithm A perfectly fulfils the requirement of a polynomial

time verifier for verifying the known YES of the instances. So, this concludes the proof. 
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So, what now how does the diagram look like. Here we have this complexity class P and here the

complexity class NP and here is the complexity class co-NP, P is a subset of NP intersection co-

NP.  Now let  us  introduce  a  notion  called  NP hard,  a  problem  Π is  called  NP hard  if  this

requirement is fulfilled. If existence of polynomial time algorithm for pi implies existence of

polynomial time algorithm for every problem in NP that means you know NP hardness is like a

harder. 

This is NP hard means if there exists a polynomial team algorithm for any problem which is NP

hard then that means that all problems in NP can be solved in polynomial time. And what is NP

completeness? So, NP completeness is a problem pi is called NP complete if it belongs to NP

and it is NP hard. So, in some sense NP completeness in an NP complete problem is the hardest

problem within the class NP.
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Hence, an NP complete problem is one of the hardest problems in NP. Now how can we show

some problem is NP? How can we compare relative hardness of two problems and for that we

introduce  the  notion  of  reduction?  Reduction  is  a  tool  to  compare  relative  hardness  of  two

problems.  There  are  two  kinds  of  reduction  one  is  called  Turing  reduction.  We say  that  a

problem A Turing reduces to another problem B, if there exists an algorithm for problem A

which is allowed to the resistant algorithm. 

Let us call algorithm A for problem A which is allowed to make polynomially many oracle calls

to and algorithm for B and otherwise runs in polynomial time. So, let us see. So, a problem A we

say it Turing reduces to another problem B. If suppose there exist an algorithm for B and that

algorithm we; are allowed to make oracle call to that algorithm. With that algorithm will solve

instances of B and this is a Turing direction from problem A to problem B. 

If there exists another algorithm say Cal A for problem A which solves means which makes at

most polynomial mini oracle calls to algorithm for B. It calls uses the algorithm for B as a

subroutine  and  other  operations  other  normal  operations  it  makes  polynomial  other  normal

operations.
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So,  for  example  satisfiability  Turing  reduces  to  unsatisfiability.  It  means  given  a  Boolean

formula the question for satisfiability is that is it a YES instance or NO instance. And suppose

someone  gives  me  an  algorithm for  unsatisfiability  now make  just  making one  call  to  this

algorithm as a subroutine I can check whether my any whether the input for the satisfiability

instance is a YES instance or NO instance.

An input for the satisfiability instance is a YES instance if and only if the in that same in same

formula  given  as  input  to  the  unsatisfiability  instance  is  a  NO  instance.  So,  there  is  an

observation. Suppose of problem Π1 Turing reduces to another problem Π2 then if there exists

polynomial time algorithm for Π2 then there exists polynomial time algorithm for Π1. So, with

this sentence within braces as a whole. 

So, suppose  Π1 Turing reduces to  Π2 then existence of a polynomial time algorithm for  Π2

implies existence of polynomial algorithm for  Π1 that is directly from the definition. So, if  Π1

Turing reduces to Π2 then we write Turing reduces to another problem Π2 in polynomial time the

reduction itself works in polynomial time. You know in this course whenever we are doing NP

completeness, we usually will be dealing with polynomial time reduction. 

So, if not mentioned otherwise it is typically assume that no reduction should run in polynomial

time then we write Π1 reduces in polynomial time here you write Turing Π2. So, this is the first



kind of reduction. The second kind of reduction is what is called Karp reduction which is more

popular. 
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We say a problem Π1 Karp reduces in polynomial time to another problem  Π2 if there exists

polynomial time algorithm A which takes an instance of Π1 has input and outputs and equivalent

instance A of x of Π2 that is equivalent means that is x is a YES instance of Π1 if and only if x is

an YES instance of  Π2. That is here I have instances of Π1 is set maps to this algorithm takes

instances of Π1 as input. 

And outputs instances of Π2, x is mapped to A of x, x belongs to Π1 because Π1 is modelled as a

language if and only if A of x belongs to Π2. 
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Again,  it  is  an  easy  observation  if  a  problem  Π1 polynomial  time  Karp  reduces  to  another

problem pi  2  then  if  there  exists  a  polynomial  time  algorithm for  pi  2  then  there  exists  a

polynomial time algorithm for Π1 and indeed, so if what is the algorithm? The algorithm for Π1

simply takes an instance x and runs the reduction Karp reduction Cal A and gets the instance A

of x. 

Now if I have an algorithm for solving Π2 then I can run that algorithm on the instance A of x

and the output is x belongs to Π1 if and only if A(x ) belongs to Π2 because of this. So, in this

case we write if Π1 polynomial time Karp reduces to Π2 then we write Π1 reduces to Π2. Here is

another nice observation the complexity classes NP and co-NP are closed under Karp reductions

under polynomial time Karp reductions.
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That is if Π1 polynomial time Karp reduces to Π2 and Π1 belongs to say NP or co-NP then Π2

also belongs to NP or co-NP. So, let us stop here and in the next class we will be seeing concrete

problems and concrete reductions. Thank you.


