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Lecture 30 
Counting Independent Sets of a Graph (Continued)

Welcome in the last class, we have started seeing Markov Chain Monte Carlo method and

using this method how we can design FPRAS for Counting the Number of Independent Sets

of a Graph.
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So, let us continue that Markov Chain Monte Carlo method. So, we had a Markov Chain on

independent  sets  with  uniform distribution  as  it  is  stationary  distribution.  And  the  mark

option is aperiodic the Markov Chain was aperiodic of course finite and hence thus converges

to it is stationary distribution. So, it converges to it is stationary distribution So, using this

framework assuming mixing time is small.

We assume access to ϵ
6m

 uniform samples from the set of all independent sets. And if ~r i is

the estimate of r i then in the last class, we have seen that ~r i is expectation of ~r i  is greater than

equal to one third and this makes the Chernoff bound applicable. Because if excitation is very

close to 0 then the Chernoff bound the inequality or the bound that it gives is not very useful.
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So, let us continue that now applying multiplicative version of Chernoff bound there exists a

constant  c,  such that  for  l= cm
2

ϵ 2
ln(2mδ ),  we have  the  following.  So,  this  is  from again

estimator theorem that we want to estimate ~r i . So, probability that ~r i minus expectation of ~r i

is greater than equal to ϵ
12m

 expectation of ~r i.

This is probability that 
~r i
E [~ri ]

−1 is greater than equal to ϵ
12m

, this is less than equal to δ
m

.

Because here we have chosen we put ln(2mδ ) that is why the error probability is δ
m

. So, the

above inequality bounds deviation of ~r i from E [~ri] but we need to compare r i and δ .

Because our goal is to compute r i, estimate r i, we write however we need to compare ~r i  with

ri. But for that let us recall, we had already had some bound of deviation of expectation ~r i

from r i, let us recall what was that?

(Refer Slide Time: 08:16)



We had expectation of  ~r i−ri this is at most  ϵ
6m

. So, this always holds and this hold with

probability and ~r i  is ϵ
12m

 close to r i expectation of ~r i  in multiplicative term with probability

at least ϵ
2m

. So, with probability, so hence or all together with probability at least 1− δ
m

. We

have what is 
~r i
r i

=
~ri
E[~r i]

E[~r i ]
r i

 .

Now, let us bound in them 
~r i
E[~ri]

 this is at most 1+ ϵ
12m

. So, this is less than equal to the first

term is at most 1+ ϵ
12m

. The second term expectation of ~r i  so, this is 6 m and from there we

got that expectation of 
~ri
ri

−1 this is less than equal to ϵ
3m

, here we use that r i≥1 /2.

So, expectation of 
~ri
ri

 is at most 1+ ϵ
3m

 on the lower side, the first term is at least 1− ϵ
12m

.

The second term expectation of 
~r i
r i

 this is at least 1− ϵ
3m

. So, then this is, but this is less than

equal  to  1− ϵ
12m

+ ϵ
3m

.  So,  this  is  at  least  1− ϵ
2m

 and this  is  less than equal  to  1+ ϵ
2m

,

ignoring ϵ 2 terms.



So, each so we have  
~r i
r i

 belongs to this interval  [1− ϵ
2m

,1+ ϵ
2m

] with probability at least

1− δ
m

. 
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And now using union bound, we have 
~ri
ri

 for all i in m this particular event. This value is in

between or this belongs to  [1− ϵ
2m

,1+ ϵ
2m ] this for all  i∈[m] probability of this is greater

than equal to 1−δ  this is from union bound. So, hence with probability at least 1−δ  we have

ALG by I (G) this is product over 
~ri
ri

 i equal to 1 to m. 

This is this product belongs to 1− ϵ
2m

 each of the term is greater than equal to ϵ
2m

. So, this is

this product is greater than equal to [(1− ϵ
2m )

m

,(1+ ϵ
2m )

m] . This is contained in [1−ϵ ,1+ϵ ].

Hence ALG hence probability that ALG minus cardinality of independent sets.

Number  of  independent  sets  in  G  this  is  more  than  ϵ  times  cardinality  of  number  of

independent sets in G this is less than equal to  δ . Hence, we have fully polynomial time

FPRAS is  fully  polynomial  randomized  approximate  counter  FPRAS fully  polynomial  a

randomized approximate counter for counting the number of independent sets in a graph.
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And we have used Markov Chain based fully polynomial approximately uniform sampler to

draw epsilon  by  6m uniform samples  from  I (Gi).  So,  what  is  the  running  time  of  this

algorithm? Running time of this algorithm is big O of so, to sample each to estimate each ri

we are drawing this many samples cm
2

ϵ 2
ln(2mδ ) samples that is for each r i and we need to

compute estimate r1 ,…,rm.

So, there are m many this m times this and to draw one sample, we need  tmix that is the

mixing  time  of  the  Markov  Chain  on  the  independent  sets  and  this  is  ϵ
6m

.  This  is

O(m3ϵ2
ln(2mδ )tmix( ϵ

6m )) . So, let us briefly recall what is the sort of or technique that we

have seen in randomized algorithms parts? So, this concludes the randomized algorithms part.

So, in the randomized algorithm parts, we see some two types of randomized algorithms. One

is Las Vegas randomized algorithm and here we have seen analysis of quick sort analysis of

randomized quick sort. Then we have seen couple of Monte Carlo algorithms Monte Carlo

randomized algorithms. Here we have seen polynomial identity testing and then Karger’s min

cut algorithm and randomized algorithm for 2SAT.
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Next, we see we had seen various concentration bounds. Here comes Markov's inequality

then Chebyshev's inequality then Chernoff bound and union bound. Then we see applications

of concentration bounds. Here we have seen flipping coins then balls and bins then coupon

collector problem, birthday paradox and so on. Then we move on to what is called Markov

Chain, in Markov Chain we have studied fundamental theorem of Markov Chain.

And  then  many  examples  Markov  Chain  on  circles,  random walk  on  graph,  metropolis

algorithm. Then we have seen coupling technique then we have seen mixing time for some

special Markov Chain mixing time for a random walk on cycles. Then mixing time for card

shuffling and then other concepts like hitting time, commute time, cover time. And using this

we have seen a randomized algorithm to discover the graph what is the cover time of random

work on graph?
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Then  finally,  we  have  seen  Monte  Carlo  method,  here  we  have  seen  estimate  π ,  DNF

counting and number of independent sets and here we have seen Markov Chain Monte Carlo

method. So, this concludes the second part of the course which is like randomized algorithm.

So, in from the next class we will study intractability namely NP-completeness and so on.

Thank you.


